Efficient Slave-Boson Approach for Multiorbital Two-Particle Response Functions and Superconductivity
We develop an efficient approach for computing two-particle response functions and interaction vertices for multiorbital strongly correlated systems based on the rotationally invariant slave-boson framework. The method is applied to the degenerate three-orbital Hubbard-Kanamori model for investigati...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3913d915751441d6a631898459952862 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | We develop an efficient approach for computing two-particle response functions and interaction vertices for multiorbital strongly correlated systems based on the rotationally invariant slave-boson framework. The method is applied to the degenerate three-orbital Hubbard-Kanamori model for investigating the origin of the s-wave orbital antisymmetric spin-triplet superconductivity in Hund’s metal regime, previously found in the dynamical mean-field theory studies. By computing the pairing interaction considering the particle-particle and the particle-hole scattering channels, we identify the mechanism leading to the pairing instability around Hund’s metal crossover arises from the particle-particle channel, which contains the local electron pair fluctuation between different particle-number sectors of the atomic Hilbert space. On the other hand, the particle-hole spin fluctuations induce the s-wave pairing instability before entering Hund’s regime. Our approach paves the way for investigating the pairing mechanism in realistic correlated materials. |
---|