On a Conjecture for the One-Dimensional Perturbed Gelfand Problem for the Combustion Theory

We investigate the well-known one-dimensional perturbed Gelfand boundary value problem and approximate the values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mn...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Huizeng Qin, Youmin Lu
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/3917866811254d4484e07959b4ad170f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3917866811254d4484e07959b4ad170f
record_format dspace
spelling oai:doaj.org-article:3917866811254d4484e07959b4ad170f2021-11-25T19:07:01ZOn a Conjecture for the One-Dimensional Perturbed Gelfand Problem for the Combustion Theory10.3390/sym131121372073-8994https://doaj.org/article/3917866811254d4484e07959b4ad170f2021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2137https://doaj.org/toc/2073-8994We investigate the well-known one-dimensional perturbed Gelfand boundary value problem and approximate the values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mn>0</mn></msub><mo>,</mo><msub><mi>λ</mi><mo>*</mo></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>λ</mi><mo>*</mo></msup></semantics></math></inline-formula> such that this problem has a unique solution when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><msub><mi>α</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> and has three solutions when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>></mo><msub><mi>α</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mo>*</mo></msub><mo><</mo><mi>λ</mi><mo><</mo><msup><mi>λ</mi><mo>*</mo></msup><mo>.</mo></mrow></semantics></math></inline-formula> The solutions of this problem are always even functions due to its symmetric boundary values and autonomous characteristics. We use numerical computation to show that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.0686722336</mn><mo><</mo><msub><mi>α</mi><mn>0</mn></msub><mo><</mo><mrow><mn>4.0686722344</mn></mrow></mrow></semantics></math></inline-formula>. This result improves the existing result for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mn>0</mn></msub><mo>≈</mo><mn>4.069</mn></mrow></semantics></math></inline-formula> and increases the accuracy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mn>0</mn></msub></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup><mo>.</mo></mrow></semantics></math></inline-formula> We developed an algorithm that reduces errors and increases efficiency in our computation. The interval of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> for this problem to have three solutions for given values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> is also computed with accuracy up to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>10</mn><mrow><mo>−</mo><mn>14</mn></mrow></msup><mo>.</mo></mrow></semantics></math></inline-formula>Huizeng QinYoumin LuMDPI AGarticledifferential equationapplicationmultiple solutions with symmetryscientific computationMathematicsQA1-939ENSymmetry, Vol 13, Iss 2137, p 2137 (2021)
institution DOAJ
collection DOAJ
language EN
topic differential equation
application
multiple solutions with symmetry
scientific computation
Mathematics
QA1-939
spellingShingle differential equation
application
multiple solutions with symmetry
scientific computation
Mathematics
QA1-939
Huizeng Qin
Youmin Lu
On a Conjecture for the One-Dimensional Perturbed Gelfand Problem for the Combustion Theory
description We investigate the well-known one-dimensional perturbed Gelfand boundary value problem and approximate the values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mn>0</mn></msub><mo>,</mo><msub><mi>λ</mi><mo>*</mo></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>λ</mi><mo>*</mo></msup></semantics></math></inline-formula> such that this problem has a unique solution when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0</mn><mo><</mo><mi>α</mi><mo><</mo><msub><mi>α</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>λ</mi><mo>></mo><mn>0</mn><mo>,</mo></mrow></semantics></math></inline-formula> and has three solutions when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>></mo><msub><mi>α</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>λ</mi><mo>*</mo></msub><mo><</mo><mi>λ</mi><mo><</mo><msup><mi>λ</mi><mo>*</mo></msup><mo>.</mo></mrow></semantics></math></inline-formula> The solutions of this problem are always even functions due to its symmetric boundary values and autonomous characteristics. We use numerical computation to show that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.0686722336</mn><mo><</mo><msub><mi>α</mi><mn>0</mn></msub><mo><</mo><mrow><mn>4.0686722344</mn></mrow></mrow></semantics></math></inline-formula>. This result improves the existing result for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>α</mi><mn>0</mn></msub><mo>≈</mo><mn>4.069</mn></mrow></semantics></math></inline-formula> and increases the accuracy of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>α</mi><mn>0</mn></msub></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup><mo>.</mo></mrow></semantics></math></inline-formula> We developed an algorithm that reduces errors and increases efficiency in our computation. The interval of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>λ</mi></semantics></math></inline-formula> for this problem to have three solutions for given values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> is also computed with accuracy up to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mn>10</mn><mrow><mo>−</mo><mn>14</mn></mrow></msup><mo>.</mo></mrow></semantics></math></inline-formula>
format article
author Huizeng Qin
Youmin Lu
author_facet Huizeng Qin
Youmin Lu
author_sort Huizeng Qin
title On a Conjecture for the One-Dimensional Perturbed Gelfand Problem for the Combustion Theory
title_short On a Conjecture for the One-Dimensional Perturbed Gelfand Problem for the Combustion Theory
title_full On a Conjecture for the One-Dimensional Perturbed Gelfand Problem for the Combustion Theory
title_fullStr On a Conjecture for the One-Dimensional Perturbed Gelfand Problem for the Combustion Theory
title_full_unstemmed On a Conjecture for the One-Dimensional Perturbed Gelfand Problem for the Combustion Theory
title_sort on a conjecture for the one-dimensional perturbed gelfand problem for the combustion theory
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/3917866811254d4484e07959b4ad170f
work_keys_str_mv AT huizengqin onaconjecturefortheonedimensionalperturbedgelfandproblemforthecombustiontheory
AT youminlu onaconjecturefortheonedimensionalperturbedgelfandproblemforthecombustiontheory
_version_ 1718410270826561536