Bioconvection flow in accelerated couple stress nanoparticles with activation energy: bio-fuel applications
Abstract On the account of significance of bioconvection in biotechnology and several biological systems, valuable contributions have been performed by scientists in current decade. In current framework, a theoretical bioconvection model is constituted to examine the analyzed the thermally developed...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/39179c09b3cd473c9b83261102565952 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:39179c09b3cd473c9b83261102565952 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:39179c09b3cd473c9b832611025659522021-12-02T12:09:05ZBioconvection flow in accelerated couple stress nanoparticles with activation energy: bio-fuel applications10.1038/s41598-021-82209-02045-2322https://doaj.org/article/39179c09b3cd473c9b832611025659522021-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-82209-0https://doaj.org/toc/2045-2322Abstract On the account of significance of bioconvection in biotechnology and several biological systems, valuable contributions have been performed by scientists in current decade. In current framework, a theoretical bioconvection model is constituted to examine the analyzed the thermally developed magnetized couple stress nanoparticles flow by involving narrative flow characteristics namely activation energy, chemical reaction and radiation features. The accelerated flow is organized on the periodically porous stretched configuration. The heat performances are evaluated via famous Buongiorno’s model which successfully reflects the important features of thermophoretic and Brownian motion. The composed fluid model is based on the governing equations of momentum, energy, nanoparticles concentration and motile microorganisms. The dimensionless problem has been solved analytically via homotopic procedure where the convergence of results is carefully examined. The interesting graphical description for the distribution of velocity, heat transfer of nanoparticles, concentration pattern and gyrotactic microorganism significance are presented with relevant physical significance. The variation in wall shear stress is also graphically underlined which shows an interesting periodic oscillation near the flow domain. The numerical interpretation for examining the heat mass and motile density transfer rate is presented in tubular form.Sami Ullah KhanKamel Al-KhaledA. AldabeshMuhammad AwaisIskander TliliNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Sami Ullah Khan Kamel Al-Khaled A. Aldabesh Muhammad Awais Iskander Tlili Bioconvection flow in accelerated couple stress nanoparticles with activation energy: bio-fuel applications |
description |
Abstract On the account of significance of bioconvection in biotechnology and several biological systems, valuable contributions have been performed by scientists in current decade. In current framework, a theoretical bioconvection model is constituted to examine the analyzed the thermally developed magnetized couple stress nanoparticles flow by involving narrative flow characteristics namely activation energy, chemical reaction and radiation features. The accelerated flow is organized on the periodically porous stretched configuration. The heat performances are evaluated via famous Buongiorno’s model which successfully reflects the important features of thermophoretic and Brownian motion. The composed fluid model is based on the governing equations of momentum, energy, nanoparticles concentration and motile microorganisms. The dimensionless problem has been solved analytically via homotopic procedure where the convergence of results is carefully examined. The interesting graphical description for the distribution of velocity, heat transfer of nanoparticles, concentration pattern and gyrotactic microorganism significance are presented with relevant physical significance. The variation in wall shear stress is also graphically underlined which shows an interesting periodic oscillation near the flow domain. The numerical interpretation for examining the heat mass and motile density transfer rate is presented in tubular form. |
format |
article |
author |
Sami Ullah Khan Kamel Al-Khaled A. Aldabesh Muhammad Awais Iskander Tlili |
author_facet |
Sami Ullah Khan Kamel Al-Khaled A. Aldabesh Muhammad Awais Iskander Tlili |
author_sort |
Sami Ullah Khan |
title |
Bioconvection flow in accelerated couple stress nanoparticles with activation energy: bio-fuel applications |
title_short |
Bioconvection flow in accelerated couple stress nanoparticles with activation energy: bio-fuel applications |
title_full |
Bioconvection flow in accelerated couple stress nanoparticles with activation energy: bio-fuel applications |
title_fullStr |
Bioconvection flow in accelerated couple stress nanoparticles with activation energy: bio-fuel applications |
title_full_unstemmed |
Bioconvection flow in accelerated couple stress nanoparticles with activation energy: bio-fuel applications |
title_sort |
bioconvection flow in accelerated couple stress nanoparticles with activation energy: bio-fuel applications |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/39179c09b3cd473c9b83261102565952 |
work_keys_str_mv |
AT samiullahkhan bioconvectionflowinacceleratedcouplestressnanoparticleswithactivationenergybiofuelapplications AT kamelalkhaled bioconvectionflowinacceleratedcouplestressnanoparticleswithactivationenergybiofuelapplications AT aaldabesh bioconvectionflowinacceleratedcouplestressnanoparticleswithactivationenergybiofuelapplications AT muhammadawais bioconvectionflowinacceleratedcouplestressnanoparticleswithactivationenergybiofuelapplications AT iskandertlili bioconvectionflowinacceleratedcouplestressnanoparticleswithactivationenergybiofuelapplications |
_version_ |
1718394683785216000 |