Questioning Domain Adaptation in Myoelectric Hand Prostheses Control: An Inter- and Intra-Subject Study
One major challenge limiting the use of dexterous robotic hand prostheses controlled via electromyography and pattern recognition relates to the important efforts required to train complex models from scratch. To overcome this problem, several studies in recent years proposed to use transfer learnin...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/391934e93c1140679dfb0f541308f874 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:391934e93c1140679dfb0f541308f874 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:391934e93c1140679dfb0f541308f8742021-11-25T18:56:55ZQuestioning Domain Adaptation in Myoelectric Hand Prostheses Control: An Inter- and Intra-Subject Study10.3390/s212275001424-8220https://doaj.org/article/391934e93c1140679dfb0f541308f8742021-11-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/22/7500https://doaj.org/toc/1424-8220One major challenge limiting the use of dexterous robotic hand prostheses controlled via electromyography and pattern recognition relates to the important efforts required to train complex models from scratch. To overcome this problem, several studies in recent years proposed to use transfer learning, combining pre-trained models (obtained from prior subjects) with training sessions performed on a specific user. Although a few promising results were reported in the past, it was recently shown that the use of conventional transfer learning algorithms does not increase performance if proper hyperparameter optimization is performed on the standard approach that does not exploit transfer learning. The objective of this paper is to introduce novel analyses on this topic by using a random forest classifier without hyperparameter optimization and to extend them with experiments performed on data recorded from the same patient, but in different data acquisition sessions. Two domain adaptation techniques were tested on the random forest classifier, allowing us to conduct experiments on healthy subjects and amputees. Differently from several previous papers, our results show that there are no appreciable improvements in terms of accuracy, regardless of the transfer learning techniques tested. The lack of adaptive learning is also demonstrated for the first time in an intra-subject experimental setting when using as a source ten data acquisitions recorded from the same subject but on five different days.Giulio MaranoCristina BrambillaRobert Mihai MiraAlessandro ScanoHenning MüllerManfredo AtzoriMDPI AGarticlemachine learningEMGbiofeedbacktransfer learningrandom forest classifierChemical technologyTP1-1185ENSensors, Vol 21, Iss 7500, p 7500 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
machine learning EMG biofeedback transfer learning random forest classifier Chemical technology TP1-1185 |
spellingShingle |
machine learning EMG biofeedback transfer learning random forest classifier Chemical technology TP1-1185 Giulio Marano Cristina Brambilla Robert Mihai Mira Alessandro Scano Henning Müller Manfredo Atzori Questioning Domain Adaptation in Myoelectric Hand Prostheses Control: An Inter- and Intra-Subject Study |
description |
One major challenge limiting the use of dexterous robotic hand prostheses controlled via electromyography and pattern recognition relates to the important efforts required to train complex models from scratch. To overcome this problem, several studies in recent years proposed to use transfer learning, combining pre-trained models (obtained from prior subjects) with training sessions performed on a specific user. Although a few promising results were reported in the past, it was recently shown that the use of conventional transfer learning algorithms does not increase performance if proper hyperparameter optimization is performed on the standard approach that does not exploit transfer learning. The objective of this paper is to introduce novel analyses on this topic by using a random forest classifier without hyperparameter optimization and to extend them with experiments performed on data recorded from the same patient, but in different data acquisition sessions. Two domain adaptation techniques were tested on the random forest classifier, allowing us to conduct experiments on healthy subjects and amputees. Differently from several previous papers, our results show that there are no appreciable improvements in terms of accuracy, regardless of the transfer learning techniques tested. The lack of adaptive learning is also demonstrated for the first time in an intra-subject experimental setting when using as a source ten data acquisitions recorded from the same subject but on five different days. |
format |
article |
author |
Giulio Marano Cristina Brambilla Robert Mihai Mira Alessandro Scano Henning Müller Manfredo Atzori |
author_facet |
Giulio Marano Cristina Brambilla Robert Mihai Mira Alessandro Scano Henning Müller Manfredo Atzori |
author_sort |
Giulio Marano |
title |
Questioning Domain Adaptation in Myoelectric Hand Prostheses Control: An Inter- and Intra-Subject Study |
title_short |
Questioning Domain Adaptation in Myoelectric Hand Prostheses Control: An Inter- and Intra-Subject Study |
title_full |
Questioning Domain Adaptation in Myoelectric Hand Prostheses Control: An Inter- and Intra-Subject Study |
title_fullStr |
Questioning Domain Adaptation in Myoelectric Hand Prostheses Control: An Inter- and Intra-Subject Study |
title_full_unstemmed |
Questioning Domain Adaptation in Myoelectric Hand Prostheses Control: An Inter- and Intra-Subject Study |
title_sort |
questioning domain adaptation in myoelectric hand prostheses control: an inter- and intra-subject study |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/391934e93c1140679dfb0f541308f874 |
work_keys_str_mv |
AT giuliomarano questioningdomainadaptationinmyoelectrichandprosthesescontrolaninterandintrasubjectstudy AT cristinabrambilla questioningdomainadaptationinmyoelectrichandprosthesescontrolaninterandintrasubjectstudy AT robertmihaimira questioningdomainadaptationinmyoelectrichandprosthesescontrolaninterandintrasubjectstudy AT alessandroscano questioningdomainadaptationinmyoelectrichandprosthesescontrolaninterandintrasubjectstudy AT henningmuller questioningdomainadaptationinmyoelectrichandprosthesescontrolaninterandintrasubjectstudy AT manfredoatzori questioningdomainadaptationinmyoelectrichandprosthesescontrolaninterandintrasubjectstudy |
_version_ |
1718410517065760768 |