Variation in the concentration and regional distribution of magnetic nanoparticles in human brains, with and without Alzheimer’s disease, from the UK
Abstract The presence of magnetic nanoparticles (MNPs) in the human brain was attributed until recently to endogenous formation; associated with a putative navigational sense, or with pathological mishandling of brain iron within senile plaques. Conversely, an exogenous, high-temperature source of b...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/391d7a1127e245c7853e52a6ed9ebed1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:391d7a1127e245c7853e52a6ed9ebed1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:391d7a1127e245c7853e52a6ed9ebed12021-12-02T13:40:59ZVariation in the concentration and regional distribution of magnetic nanoparticles in human brains, with and without Alzheimer’s disease, from the UK10.1038/s41598-021-88725-32045-2322https://doaj.org/article/391d7a1127e245c7853e52a6ed9ebed12021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-88725-3https://doaj.org/toc/2045-2322Abstract The presence of magnetic nanoparticles (MNPs) in the human brain was attributed until recently to endogenous formation; associated with a putative navigational sense, or with pathological mishandling of brain iron within senile plaques. Conversely, an exogenous, high-temperature source of brain MNPs has been newly identified, based on their variable sizes/concentrations, rounded shapes/surface crystallites, and co-association with non-physiological metals (e.g., platinum, cobalt). Here, we examined the concentration and regional distribution of brain magnetite/maghemite, by magnetic remanence measurements of 147 samples of fresh/frozen tissues, from Alzheimer’s disease (AD) and pathologically-unremarkable brains (80–98 years at death) from the Manchester Brain Bank (MBB), UK. The magnetite/maghemite concentrations varied between individual cases, and different brain regions, with no significant difference between the AD and non-AD cases. Similarly, all the elderly MBB brains contain varying concentrations of non-physiological metals (e.g. lead, cerium), suggesting universal incursion of environmentally-sourced particles, likely across the geriatric blood–brain barrier (BBB). Cerebellar Manchester samples contained significantly lower (~ 9×) ferrimagnetic content compared with those from a young (29 years ave.), neurologically-damaged Mexico City cohort. Investigation of younger, variably-exposed cohorts, prior to loss of BBB integrity, seems essential to understand early brain impacts of exposure to exogenous magnetite/maghemite and other metal-rich pollution particles.Jessica HammondBarbara A. MaherImad A. M. AhmedDavid AllsopNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jessica Hammond Barbara A. Maher Imad A. M. Ahmed David Allsop Variation in the concentration and regional distribution of magnetic nanoparticles in human brains, with and without Alzheimer’s disease, from the UK |
description |
Abstract The presence of magnetic nanoparticles (MNPs) in the human brain was attributed until recently to endogenous formation; associated with a putative navigational sense, or with pathological mishandling of brain iron within senile plaques. Conversely, an exogenous, high-temperature source of brain MNPs has been newly identified, based on their variable sizes/concentrations, rounded shapes/surface crystallites, and co-association with non-physiological metals (e.g., platinum, cobalt). Here, we examined the concentration and regional distribution of brain magnetite/maghemite, by magnetic remanence measurements of 147 samples of fresh/frozen tissues, from Alzheimer’s disease (AD) and pathologically-unremarkable brains (80–98 years at death) from the Manchester Brain Bank (MBB), UK. The magnetite/maghemite concentrations varied between individual cases, and different brain regions, with no significant difference between the AD and non-AD cases. Similarly, all the elderly MBB brains contain varying concentrations of non-physiological metals (e.g. lead, cerium), suggesting universal incursion of environmentally-sourced particles, likely across the geriatric blood–brain barrier (BBB). Cerebellar Manchester samples contained significantly lower (~ 9×) ferrimagnetic content compared with those from a young (29 years ave.), neurologically-damaged Mexico City cohort. Investigation of younger, variably-exposed cohorts, prior to loss of BBB integrity, seems essential to understand early brain impacts of exposure to exogenous magnetite/maghemite and other metal-rich pollution particles. |
format |
article |
author |
Jessica Hammond Barbara A. Maher Imad A. M. Ahmed David Allsop |
author_facet |
Jessica Hammond Barbara A. Maher Imad A. M. Ahmed David Allsop |
author_sort |
Jessica Hammond |
title |
Variation in the concentration and regional distribution of magnetic nanoparticles in human brains, with and without Alzheimer’s disease, from the UK |
title_short |
Variation in the concentration and regional distribution of magnetic nanoparticles in human brains, with and without Alzheimer’s disease, from the UK |
title_full |
Variation in the concentration and regional distribution of magnetic nanoparticles in human brains, with and without Alzheimer’s disease, from the UK |
title_fullStr |
Variation in the concentration and regional distribution of magnetic nanoparticles in human brains, with and without Alzheimer’s disease, from the UK |
title_full_unstemmed |
Variation in the concentration and regional distribution of magnetic nanoparticles in human brains, with and without Alzheimer’s disease, from the UK |
title_sort |
variation in the concentration and regional distribution of magnetic nanoparticles in human brains, with and without alzheimer’s disease, from the uk |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/391d7a1127e245c7853e52a6ed9ebed1 |
work_keys_str_mv |
AT jessicahammond variationintheconcentrationandregionaldistributionofmagneticnanoparticlesinhumanbrainswithandwithoutalzheimersdiseasefromtheuk AT barbaraamaher variationintheconcentrationandregionaldistributionofmagneticnanoparticlesinhumanbrainswithandwithoutalzheimersdiseasefromtheuk AT imadamahmed variationintheconcentrationandregionaldistributionofmagneticnanoparticlesinhumanbrainswithandwithoutalzheimersdiseasefromtheuk AT davidallsop variationintheconcentrationandregionaldistributionofmagneticnanoparticlesinhumanbrainswithandwithoutalzheimersdiseasefromtheuk |
_version_ |
1718392609094762496 |