Generating high-fidelity synthetic patient data for assessing machine learning healthcare software
Abstract There is a growing demand for the uptake of modern artificial intelligence technologies within healthcare systems. Many of these technologies exploit historical patient health data to build powerful predictive models that can be used to improve diagnosis and understanding of disease. Howeve...
Guardado en:
Autores principales: | Allan Tucker, Zhenchen Wang, Ylenia Rotalinti, Puja Myles |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/393faecb6a464df29677635072a0df65 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine intelligence in healthcare—perspectives on trustworthiness, explainability, usability, and transparency
por: Christine M. Cutillo, et al.
Publicado: (2020) -
Application programming interfaces for knowledge transfer and generation in the life sciences and healthcare
por: Stephen K Woody, et al.
Publicado: (2020) -
The need for a system view to regulate artificial intelligence/machine learning-based software as medical device
por: Sara Gerke, et al.
Publicado: (2020) -
Publisher Correction: Application programming interfaces for knowledge transfer and generation in the life sciences and healthcare
por: Stephen K. Woody, et al.
Publicado: (2020) -
Considering the possibilities and pitfalls of Generative Pre-trained Transformer 3 (GPT-3) in healthcare delivery
por: Diane M. Korngiebel, et al.
Publicado: (2021)