Convolutional neural network with group theory and random selection particle swarm optimizer for enhancing cancer image classification
As an epitome of deep learning, convolutional neural network (CNN) has shown its advantages in solving many real-world problems. Successful CNN applications on medical prognosis and diagnosis have been achieved in recent years. Their common goal is to recognize the insights from the subtle details f...
Guardado en:
Autores principales: | Kun Lan, Gloria Li, Yang Jie, Rui Tang, Liansheng Liu, Simon Fong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/394e106986ed436996a3ca00e0995af7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Breast Mass Classification Using Diverse Contextual Information and Convolutional Neural Network
por: Mariam Busaleh, et al.
Publicado: (2021) -
A Boosted Particle Swarm Method for Energy Efficiency Optimization of PRO Systems
por: Yingxue Chen, et al.
Publicado: (2021) -
Performance of a Novel Chaotic Firefly Algorithm with Enhanced Exploration for Tackling Global Optimization Problems: Application for Dropout Regularization
por: Nebojsa Bacanin, et al.
Publicado: (2021) -
Research on Large-Scale Bi-Level Particle Swarm Optimization Algorithm
por: Jia-Jia Jiang, et al.
Publicado: (2021) -
A multi-sample particle swarm optimization algorithm based on electric field force
por: Shangbo Zhou, et al.
Publicado: (2021)