A Practical Application for Quantitative Brain Fatigue Evaluation Based on Machine Learning and Ballistocardiogram
Brain fatigue is often associated with inattention, mental retardation, prolonged reaction time, decreased work efficiency, increased error rate, and other problems. In addition to the accumulation of fatigue, brain fatigue has become one of the important factors that harm our mental health. Therefo...
Guardado en:
Autores principales: | Yanting Xu, Zhengyuan Yang, Gang Li, Jinghong Tian, Yonghua Jiang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3950faf2138849519ee1c7ff19e1401b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The relationship between pre-treatment heart rate variability and response to low-frequency accelerated repetitive transcranial magnetic stimulation in major depression
por: Jean-Philippe Miron, et al.
Publicado: (2021) -
Key Feature Selection and Model Analysis for Blood Pressure Estimation From Electrocardiogram, Ballistocardiogram and Photoplethysmogram
por: Yandong Zhang, et al.
Publicado: (2021) -
Evaluation of HRV estimation algorithms from PPG data using neural networks
por: Wittenberg Th., et al.
Publicado: (2020) -
Using optical fibers (OF) to control the stress-strain state of steel structures subject to fatigue failure
por: V. V. Yugay, et al.
Publicado: (2022) -
Relationship between heart rate variability and body mass index: A cross-sectional study of preschool children
por: Kathryn E. Speer, et al.
Publicado: (2021)