An Improved Deep Convolutional Neural Network-Based Autonomous Road Inspection Scheme Using Unmanned Aerial Vehicles
Recent advancements in the field of machine learning (ML) provide opportunity to conduct research on autonomous devices for a variety of applications. Intelligent decision-making is a critical task for self-driving systems. An attempt is made in this study to use a deep learning (DL) approach for th...
Guardado en:
Autores principales: | Syed-Ali Hassan, Tariq Rahim, Soo-Young Shin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/39613531cd9b4d27a2351df1484397b9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Range-Based Algorithm for Autonomous Navigation of an Aerial Drone to Approach and Follow a Herd of Cattle
por: Manaram Gnanasekera, et al.
Publicado: (2021) -
Safe Documentation of Historical Monuments by an Autonomous Unmanned Aerial Vehicle
por: Vít Krátký, et al.
Publicado: (2021) -
Robotic Inspection of Oil and Gas Plants by Hybrid Unmanned Vehicle and Mobile Ground Support Platform
por: Juha Roning, et al.
Publicado: (2021) -
An Outlook on the Future Marine Traffic Management System for Autonomous Ships
por: Michele Martelli, et al.
Publicado: (2021) -
A two-stage optimization method for unmanned aerial vehicle inspection of an oil and gas pipeline network
por: Yamin Yan, et al.
Publicado: (2019)