Applying Artificial Intelligence in Forecasting the Output of Industrial Solar Power Plant in Vietnam
This paper uses recurrent neural network (Long Short – Term Memory - LSTM network) to build a model to forecast short-term generation capacity of Phong Dien solar power plant, (48 MWp – 35 MWAC) located in Thua Thien Hue Province, Viet Nam, with input fac...
Guardado en:
Autores principales: | Ninh Quang, Linh Duy, Binh Van, Quang Dinh |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
European Alliance for Innovation (EAI)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3963d626198b4d15bd6631ce71ceb1a4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Aircraft Gearbox Fault Diagnosis System: An Approach based on Deep Learning Techniques
por: Mallikarjuna P B, et al.
Publicado: (2020) -
Water Flow Forecasting Based on River Tributaries Using Long Short-Term Memory Ensemble Model
por: Diogo F. Costa Silva, et al.
Publicado: (2021) -
A Multiscale Electricity Price Forecasting Model Based on Tensor Fusion and Deep Learning
por: Xiaoming Xie, et al.
Publicado: (2021) -
Five-Year Performance of an ESE Lightning Protection System for a Large Scale PV Power Plant in Thailand
por: Rungphet Kongnok, et al.
Publicado: (2021) -
Solar Radiation Prediction Using a Novel Hybrid Model of ARMA and NARX
por: Ines Sansa, et al.
Publicado: (2021)