The application of pangenomics and machine learning in genomic selection in plants
Abstract Genomic selection approaches have increased the speed of plant breeding, leading to growing crop yields over the last decade. However, climate change is impacting current and future yields, resulting in the need to further accelerate breeding efforts to cope with these changing conditions....
Guardado en:
Autores principales: | Philipp E. Bayer, Jakob Petereit, Monica Furaste Danilevicz, Robyn Anderson, Jacqueline Batley, David Edwards |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3973acaa6835469697e3153b1e4701f5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Plant Genome special issue: Advances in genomic selection and application of machine learning in genomic prediction for crop improvement
por: Rajeev K. Varshney
Publicado: (2021) -
Multitrait machine‐ and deep‐learning models for genomic selection using spectral information in a wheat breeding program
por: Karansher Sandhu, et al.
Publicado: (2021) -
Gain from genomic selection for a selection index in two‐row spring barley
por: Daniel W. Sweeney, et al.
Publicado: (2021) -
Deep‐learning power and perspectives for genomic selection
por: Osval Antonio Montesinos‐López, et al.
Publicado: (2021) -
Experimental evaluation of genomic selection prediction for rust resistance in sugarcane
por: Md S. Islam, et al.
Publicado: (2021)