A Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces
The doping of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/397a291b398a4e68b4e1f8089cbdad2a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The doping of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>-based nanomaterials for semiconductor-sensitised photoreactions has been a practice extensively studied and applied for many years. The main goal remains the improvement of light harvesting capabilities under passive solar irradiation, that in the case of undoped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> is limited and restricted to relatively low latitudes. The activity and selectivity of doped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> photocatalysts are generally discussed on the basis of the modified band structure; energetics of intrinsic or extrinsic band gaps including trapping states; redox potentials of band edges, including band bending at solid/fluid interfaces; and charge carriers scavenging/transfer by/to adsorbed species. Electron (and hole) transfer to adsorbates is often invoked to justify the formation of highly reactive species (e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">H</mi><msup><mi mathvariant="normal">O</mi><mo>.</mo></msup></mrow></semantics></math></inline-formula> from water); however, a complete description of the nanoparticle surface chemistry dictating adsorption/desorption events is often missing or overlooked. Here, we show that by employing a surface electrochemical triple-layer (TLM) approach for the nanoparticles/water interface, in combination with electron paramagnetic resonance spectroscopy (EPR), transmission electron microscopy and electrophoretic measurements, we can elucidate the surface chemistry of doped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> nanoparticles and link it to the nature of the dopants. Exemplifying it for the cases of undoped, as well as W- and N-doped and codoped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> nanoparticles, we show how surface charge density; surface, Stern and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> potentials; surface acidity constants; and speciation of surface sites are influenced by the nature of the dopants and their loading. |
---|