A Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces

The doping of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sam Gorman, Kirstie Rickaby, Li Lu, Christopher J. Kiely, Donald E. Macphee, Andrea Folli
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/397a291b398a4e68b4e1f8089cbdad2a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:397a291b398a4e68b4e1f8089cbdad2a
record_format dspace
spelling oai:doaj.org-article:397a291b398a4e68b4e1f8089cbdad2a2021-11-25T17:05:39ZA Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces10.3390/catal111113052073-4344https://doaj.org/article/397a291b398a4e68b4e1f8089cbdad2a2021-10-01T00:00:00Zhttps://www.mdpi.com/2073-4344/11/11/1305https://doaj.org/toc/2073-4344The doping of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>-based nanomaterials for semiconductor-sensitised photoreactions has been a practice extensively studied and applied for many years. The main goal remains the improvement of light harvesting capabilities under passive solar irradiation, that in the case of undoped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> is limited and restricted to relatively low latitudes. The activity and selectivity of doped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> photocatalysts are generally discussed on the basis of the modified band structure; energetics of intrinsic or extrinsic band gaps including trapping states; redox potentials of band edges, including band bending at solid/fluid interfaces; and charge carriers scavenging/transfer by/to adsorbed species. Electron (and hole) transfer to adsorbates is often invoked to justify the formation of highly reactive species (e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">H</mi><msup><mi mathvariant="normal">O</mi><mo>.</mo></msup></mrow></semantics></math></inline-formula> from water); however, a complete description of the nanoparticle surface chemistry dictating adsorption/desorption events is often missing or overlooked. Here, we show that by employing a surface electrochemical triple-layer (TLM) approach for the nanoparticles/water interface, in combination with electron paramagnetic resonance spectroscopy (EPR), transmission electron microscopy and electrophoretic measurements, we can elucidate the surface chemistry of doped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> nanoparticles and link it to the nature of the dopants. Exemplifying it for the cases of undoped, as well as W- and N-doped and codoped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> nanoparticles, we show how surface charge density; surface, Stern and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> potentials; surface acidity constants; and speciation of surface sites are influenced by the nature of the dopants and their loading.Sam GormanKirstie RickabyLi LuChristopher J. KielyDonald E. MacpheeAndrea FolliMDPI AGarticleelectron paramagnetic resonancesemiconductor photocatalysisTiO<sub>2</sub>colloidal chemistrysolid-liquid interfacemetal oxidesChemical technologyTP1-1185ChemistryQD1-999ENCatalysts, Vol 11, Iss 1305, p 1305 (2021)
institution DOAJ
collection DOAJ
language EN
topic electron paramagnetic resonance
semiconductor photocatalysis
TiO<sub>2</sub>
colloidal chemistry
solid-liquid interface
metal oxides
Chemical technology
TP1-1185
Chemistry
QD1-999
spellingShingle electron paramagnetic resonance
semiconductor photocatalysis
TiO<sub>2</sub>
colloidal chemistry
solid-liquid interface
metal oxides
Chemical technology
TP1-1185
Chemistry
QD1-999
Sam Gorman
Kirstie Rickaby
Li Lu
Christopher J. Kiely
Donald E. Macphee
Andrea Folli
A Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces
description The doping of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>-based nanomaterials for semiconductor-sensitised photoreactions has been a practice extensively studied and applied for many years. The main goal remains the improvement of light harvesting capabilities under passive solar irradiation, that in the case of undoped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> is limited and restricted to relatively low latitudes. The activity and selectivity of doped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> photocatalysts are generally discussed on the basis of the modified band structure; energetics of intrinsic or extrinsic band gaps including trapping states; redox potentials of band edges, including band bending at solid/fluid interfaces; and charge carriers scavenging/transfer by/to adsorbed species. Electron (and hole) transfer to adsorbates is often invoked to justify the formation of highly reactive species (e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">H</mi><msup><mi mathvariant="normal">O</mi><mo>.</mo></msup></mrow></semantics></math></inline-formula> from water); however, a complete description of the nanoparticle surface chemistry dictating adsorption/desorption events is often missing or overlooked. Here, we show that by employing a surface electrochemical triple-layer (TLM) approach for the nanoparticles/water interface, in combination with electron paramagnetic resonance spectroscopy (EPR), transmission electron microscopy and electrophoretic measurements, we can elucidate the surface chemistry of doped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> nanoparticles and link it to the nature of the dopants. Exemplifying it for the cases of undoped, as well as W- and N-doped and codoped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> nanoparticles, we show how surface charge density; surface, Stern and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> potentials; surface acidity constants; and speciation of surface sites are influenced by the nature of the dopants and their loading.
format article
author Sam Gorman
Kirstie Rickaby
Li Lu
Christopher J. Kiely
Donald E. Macphee
Andrea Folli
author_facet Sam Gorman
Kirstie Rickaby
Li Lu
Christopher J. Kiely
Donald E. Macphee
Andrea Folli
author_sort Sam Gorman
title A Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces
title_short A Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces
title_full A Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces
title_fullStr A Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces
title_full_unstemmed A Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces
title_sort combination of epr, microscopy, electrophoresis and theory to elucidate the chemistry of w- and n-doped tio<sub>2</sub> nanoparticle/water interfaces
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/397a291b398a4e68b4e1f8089cbdad2a
work_keys_str_mv AT samgorman acombinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces
AT kirstierickaby acombinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces
AT lilu acombinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces
AT christopherjkiely acombinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces
AT donaldemacphee acombinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces
AT andreafolli acombinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces
AT samgorman combinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces
AT kirstierickaby combinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces
AT lilu combinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces
AT christopherjkiely combinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces
AT donaldemacphee combinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces
AT andreafolli combinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces
_version_ 1718412707641688064