A Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces
The doping of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/397a291b398a4e68b4e1f8089cbdad2a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:397a291b398a4e68b4e1f8089cbdad2a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:397a291b398a4e68b4e1f8089cbdad2a2021-11-25T17:05:39ZA Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces10.3390/catal111113052073-4344https://doaj.org/article/397a291b398a4e68b4e1f8089cbdad2a2021-10-01T00:00:00Zhttps://www.mdpi.com/2073-4344/11/11/1305https://doaj.org/toc/2073-4344The doping of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>-based nanomaterials for semiconductor-sensitised photoreactions has been a practice extensively studied and applied for many years. The main goal remains the improvement of light harvesting capabilities under passive solar irradiation, that in the case of undoped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> is limited and restricted to relatively low latitudes. The activity and selectivity of doped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> photocatalysts are generally discussed on the basis of the modified band structure; energetics of intrinsic or extrinsic band gaps including trapping states; redox potentials of band edges, including band bending at solid/fluid interfaces; and charge carriers scavenging/transfer by/to adsorbed species. Electron (and hole) transfer to adsorbates is often invoked to justify the formation of highly reactive species (e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">H</mi><msup><mi mathvariant="normal">O</mi><mo>.</mo></msup></mrow></semantics></math></inline-formula> from water); however, a complete description of the nanoparticle surface chemistry dictating adsorption/desorption events is often missing or overlooked. Here, we show that by employing a surface electrochemical triple-layer (TLM) approach for the nanoparticles/water interface, in combination with electron paramagnetic resonance spectroscopy (EPR), transmission electron microscopy and electrophoretic measurements, we can elucidate the surface chemistry of doped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> nanoparticles and link it to the nature of the dopants. Exemplifying it for the cases of undoped, as well as W- and N-doped and codoped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> nanoparticles, we show how surface charge density; surface, Stern and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> potentials; surface acidity constants; and speciation of surface sites are influenced by the nature of the dopants and their loading.Sam GormanKirstie RickabyLi LuChristopher J. KielyDonald E. MacpheeAndrea FolliMDPI AGarticleelectron paramagnetic resonancesemiconductor photocatalysisTiO<sub>2</sub>colloidal chemistrysolid-liquid interfacemetal oxidesChemical technologyTP1-1185ChemistryQD1-999ENCatalysts, Vol 11, Iss 1305, p 1305 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
electron paramagnetic resonance semiconductor photocatalysis TiO<sub>2</sub> colloidal chemistry solid-liquid interface metal oxides Chemical technology TP1-1185 Chemistry QD1-999 |
spellingShingle |
electron paramagnetic resonance semiconductor photocatalysis TiO<sub>2</sub> colloidal chemistry solid-liquid interface metal oxides Chemical technology TP1-1185 Chemistry QD1-999 Sam Gorman Kirstie Rickaby Li Lu Christopher J. Kiely Donald E. Macphee Andrea Folli A Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces |
description |
The doping of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula>-based nanomaterials for semiconductor-sensitised photoreactions has been a practice extensively studied and applied for many years. The main goal remains the improvement of light harvesting capabilities under passive solar irradiation, that in the case of undoped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> is limited and restricted to relatively low latitudes. The activity and selectivity of doped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> photocatalysts are generally discussed on the basis of the modified band structure; energetics of intrinsic or extrinsic band gaps including trapping states; redox potentials of band edges, including band bending at solid/fluid interfaces; and charge carriers scavenging/transfer by/to adsorbed species. Electron (and hole) transfer to adsorbates is often invoked to justify the formation of highly reactive species (e.g., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">H</mi><msup><mi mathvariant="normal">O</mi><mo>.</mo></msup></mrow></semantics></math></inline-formula> from water); however, a complete description of the nanoparticle surface chemistry dictating adsorption/desorption events is often missing or overlooked. Here, we show that by employing a surface electrochemical triple-layer (TLM) approach for the nanoparticles/water interface, in combination with electron paramagnetic resonance spectroscopy (EPR), transmission electron microscopy and electrophoretic measurements, we can elucidate the surface chemistry of doped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> nanoparticles and link it to the nature of the dopants. Exemplifying it for the cases of undoped, as well as W- and N-doped and codoped <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">T</mi><mi mathvariant="normal">i</mi><msub><mi mathvariant="normal">O</mi><mn>2</mn></msub></mrow></semantics></math></inline-formula> nanoparticles, we show how surface charge density; surface, Stern and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> potentials; surface acidity constants; and speciation of surface sites are influenced by the nature of the dopants and their loading. |
format |
article |
author |
Sam Gorman Kirstie Rickaby Li Lu Christopher J. Kiely Donald E. Macphee Andrea Folli |
author_facet |
Sam Gorman Kirstie Rickaby Li Lu Christopher J. Kiely Donald E. Macphee Andrea Folli |
author_sort |
Sam Gorman |
title |
A Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces |
title_short |
A Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces |
title_full |
A Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces |
title_fullStr |
A Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces |
title_full_unstemmed |
A Combination of EPR, Microscopy, Electrophoresis and Theory to Elucidate the Chemistry of W- and N-Doped TiO<sub>2</sub> Nanoparticle/Water Interfaces |
title_sort |
combination of epr, microscopy, electrophoresis and theory to elucidate the chemistry of w- and n-doped tio<sub>2</sub> nanoparticle/water interfaces |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/397a291b398a4e68b4e1f8089cbdad2a |
work_keys_str_mv |
AT samgorman acombinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces AT kirstierickaby acombinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces AT lilu acombinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces AT christopherjkiely acombinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces AT donaldemacphee acombinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces AT andreafolli acombinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces AT samgorman combinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces AT kirstierickaby combinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces AT lilu combinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces AT christopherjkiely combinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces AT donaldemacphee combinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces AT andreafolli combinationofeprmicroscopyelectrophoresisandtheorytoelucidatethechemistryofwandndopedtiosub2subnanoparticlewaterinterfaces |
_version_ |
1718412707641688064 |