Asymptotic entropy of the Gibbs state of complex networks
Abstract In this work we study the entropy of the Gibbs state corresponding to a graph. The Gibbs state is obtained from the Laplacian, normalized Laplacian or adjacency matrices associated with a graph. We calculated the entropy of the Gibbs state for a few classes of graphs and studied their behav...
Guardado en:
Autores principales: | Adam Glos, Aleksandra Krawiec, Łukasz Pawela |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3989280c9ca54c0694546a4149539f92 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Excluding false negative error in certification of quantum channels
por: Aleksandra Krawiec, et al.
Publicado: (2021) -
On the optimal certification of von Neumann measurements
por: Paulina Lewandowska, et al.
Publicado: (2021) -
Connecting complex networks to nonadditive entropies
por: R. M. de Oliveira, et al.
Publicado: (2021) -
Eigenvalue-based entropy in directed complex networks.
por: Yan Sun, et al.
Publicado: (2021) -
PhyloGibbs-MP: module prediction and discriminative motif-finding by Gibbs sampling.
por: Rahul Siddharthan
Publicado: (2008)