Entanglement-Structured LSTM Boosts Chaotic Time Series Forecasting
Traditional machine-learning methods are inefficient in capturing chaos in nonlinear dynamical systems, especially when the time difference <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>Δ</m...
Guardado en:
Autores principales: | Xiangyi Meng, Tong Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3992829212424edfbac8e23f66a783d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dynamics Analysis and Synchronous Control of Fractional-Order Entanglement Symmetrical Chaotic Systems
por: Tengfei Lei, et al.
Publicado: (2021) -
Secure OFDM with Peak-to-Average Power Ratio Reduction Using the Spectral Phase of Chaotic Signals
por: Mohamad F. Haroun, et al.
Publicado: (2021) -
Design and ARM-Based Implementation of Bitstream-Oriented Chaotic Encryption Scheme for H.264/AVC Video
por: Zirui Zhang, et al.
Publicado: (2021) -
Einstein-Podolsky-Rosen Steering for Mixed Entangled Coherent States
por: Sayed Abdel-Khalek, et al.
Publicado: (2021) -
Experimental Investigation of the Robustness of a New Bell-Type Inequality of Triphoton GHZ States in Open Systems
por: Jiaqiang Zhao, et al.
Publicado: (2021)