Emotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identification

Abstract Recognizing emotions using biological brain signals requires accurate and efficient signal processing and feature extraction methods. Existing methods use several techniques to extract useful features from a fixed number of electroencephalography (EEG) channels. The primary objective of thi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sofien Gannouni, Arwa Aledaily, Kais Belwafi, Hatim Aboalsamh
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/39b5dd32cea54af3a694bb52d1e199b2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:39b5dd32cea54af3a694bb52d1e199b2
record_format dspace
spelling oai:doaj.org-article:39b5dd32cea54af3a694bb52d1e199b22021-12-02T13:26:50ZEmotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identification10.1038/s41598-021-86345-52045-2322https://doaj.org/article/39b5dd32cea54af3a694bb52d1e199b22021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-86345-5https://doaj.org/toc/2045-2322Abstract Recognizing emotions using biological brain signals requires accurate and efficient signal processing and feature extraction methods. Existing methods use several techniques to extract useful features from a fixed number of electroencephalography (EEG) channels. The primary objective of this study was to improve the performance of emotion recognition using brain signals by applying a novel and adaptive channel selection method that acknowledges that brain activity has a unique behavior that differs from one person to another and one emotional state to another. Moreover, we propose identifying epochs, which are the instants at which excitation is maximum, during the emotion to improve the system’s accuracy. We used the zero-time windowing method to extract instantaneous spectral information using the numerator group-delay function to accurately detect the epochs in each emotional state. Different classification scheme were defined using QDC and RNN and evaluated using the DEAP database. The experimental results showed that the proposed method is highly competitive compared with existing studies of multi-class emotion recognition. The average accuracy rate exceeded 89%. Compared with existing algorithms dealing with 9 emotions, the proposed method enhanced the accuracy rate by 8%. Moreover, experiment shows that the proposed system outperforms similar approaches discriminating between 3 and 4 emotions only. We also found that the proposed method works well, even when applying conventional classification algorithms.Sofien GannouniArwa AledailyKais BelwafiHatim AboalsamhNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-17 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Sofien Gannouni
Arwa Aledaily
Kais Belwafi
Hatim Aboalsamh
Emotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identification
description Abstract Recognizing emotions using biological brain signals requires accurate and efficient signal processing and feature extraction methods. Existing methods use several techniques to extract useful features from a fixed number of electroencephalography (EEG) channels. The primary objective of this study was to improve the performance of emotion recognition using brain signals by applying a novel and adaptive channel selection method that acknowledges that brain activity has a unique behavior that differs from one person to another and one emotional state to another. Moreover, we propose identifying epochs, which are the instants at which excitation is maximum, during the emotion to improve the system’s accuracy. We used the zero-time windowing method to extract instantaneous spectral information using the numerator group-delay function to accurately detect the epochs in each emotional state. Different classification scheme were defined using QDC and RNN and evaluated using the DEAP database. The experimental results showed that the proposed method is highly competitive compared with existing studies of multi-class emotion recognition. The average accuracy rate exceeded 89%. Compared with existing algorithms dealing with 9 emotions, the proposed method enhanced the accuracy rate by 8%. Moreover, experiment shows that the proposed system outperforms similar approaches discriminating between 3 and 4 emotions only. We also found that the proposed method works well, even when applying conventional classification algorithms.
format article
author Sofien Gannouni
Arwa Aledaily
Kais Belwafi
Hatim Aboalsamh
author_facet Sofien Gannouni
Arwa Aledaily
Kais Belwafi
Hatim Aboalsamh
author_sort Sofien Gannouni
title Emotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identification
title_short Emotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identification
title_full Emotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identification
title_fullStr Emotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identification
title_full_unstemmed Emotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identification
title_sort emotion detection using electroencephalography signals and a zero-time windowing-based epoch estimation and relevant electrode identification
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/39b5dd32cea54af3a694bb52d1e199b2
work_keys_str_mv AT sofiengannouni emotiondetectionusingelectroencephalographysignalsandazerotimewindowingbasedepochestimationandrelevantelectrodeidentification
AT arwaaledaily emotiondetectionusingelectroencephalographysignalsandazerotimewindowingbasedepochestimationandrelevantelectrodeidentification
AT kaisbelwafi emotiondetectionusingelectroencephalographysignalsandazerotimewindowingbasedepochestimationandrelevantelectrodeidentification
AT hatimaboalsamh emotiondetectionusingelectroencephalographysignalsandazerotimewindowingbasedepochestimationandrelevantelectrodeidentification
_version_ 1718393024090734592