Evaluation of highly carbonated hydroxyapatite bioceramic implant coatings with hierarchical micro-/nanorod topography optimized for osseointegration
Shuang Li,1,2 Weijun Yu,3 Weiqi Zhang,1 Guohua Zhang,1 Li Yu,1 Eryi Lu1 1Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 2Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, S...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/39df8095e3a94b498ad2f97ef86725b3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:39df8095e3a94b498ad2f97ef86725b3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:39df8095e3a94b498ad2f97ef86725b32021-12-02T07:33:58ZEvaluation of highly carbonated hydroxyapatite bioceramic implant coatings with hierarchical micro-/nanorod topography optimized for osseointegration1178-2013https://doaj.org/article/39df8095e3a94b498ad2f97ef86725b32018-06-01T00:00:00Zhttps://www.dovepress.com/evaluation-of-highly-carbonated-hydroxyapatite-bioceramic-implant-coat-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Shuang Li,1,2 Weijun Yu,3 Weiqi Zhang,1 Guohua Zhang,1 Li Yu,1 Eryi Lu1 1Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 2Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 3College of Stomatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China Background: Optimal osseointegration has been recognized as a pivotal factor in determining the long-term success of biomedical implants. Materials and methods: In the current study, highly carbonated hydroxyapatite (CHA) with carbonate contents of 8, 12 and 16 wt% and pure hydroxyapatite (HA) were fabricated via a novel hydrothermal method and deposited on the titanium substrates to generate corresponding CHA bioceramic coatings (designated as C8, C12 and C16, respectively) and HA bioceramic coatings (designated as C0). Results: C8, C12 and C16 were endowed with nanoscale, hierarchical hybrid micro-/nanoscale and microscale surface topographies with rod-like superstructures, respectively. Compared with C0, the micro-/nanotextured CHA bioceramic coatings (C8, C12 and C16) possessed excellent surface bioactivity and biocompatibility, as well as better wettability, which mediated improved protein adsorption, giving rise to simultaneous enhancement of a biological cascade of events of rat bone-marrow-derived mesenchymal stem cells including cell adhesion, proliferation, osteogenic differentiation and, notably, the production of the pro-angiogenic growth factor, vascular endothelial growth factor-A. In particular, C12 with biomimetic hierarchical hybrid micro-/nanorod topography exhibited superior fractal property and predominant performance of protein adsorption, cell adhesion, proliferation and osteogenesis concomitant with angiogenesis. Conclusion: All these results suggest that the 12 wt% CHA bioceramic coating with synergistic modification of surface chemistry and topography has great prospect for future use as implant coating to achieve optimum osseointegration for orthopedic and dental applications. Keywords: carbonated hydroxyapatite, micro-/nanohybrid topography, biomimicry, titanium implantLi SYu WZhang WZhang GYu LLu EDove Medical Pressarticlecarbonated hydroxyapatitemicro/nanohybrid topography,biomimicrytitanium implantMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 13, Pp 3643-3659 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
carbonated hydroxyapatite micro/nanohybrid topography,biomimicry titanium implant Medicine (General) R5-920 |
spellingShingle |
carbonated hydroxyapatite micro/nanohybrid topography,biomimicry titanium implant Medicine (General) R5-920 Li S Yu W Zhang W Zhang G Yu L Lu E Evaluation of highly carbonated hydroxyapatite bioceramic implant coatings with hierarchical micro-/nanorod topography optimized for osseointegration |
description |
Shuang Li,1,2 Weijun Yu,3 Weiqi Zhang,1 Guohua Zhang,1 Li Yu,1 Eryi Lu1 1Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 2Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 3College of Stomatology, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China Background: Optimal osseointegration has been recognized as a pivotal factor in determining the long-term success of biomedical implants. Materials and methods: In the current study, highly carbonated hydroxyapatite (CHA) with carbonate contents of 8, 12 and 16 wt% and pure hydroxyapatite (HA) were fabricated via a novel hydrothermal method and deposited on the titanium substrates to generate corresponding CHA bioceramic coatings (designated as C8, C12 and C16, respectively) and HA bioceramic coatings (designated as C0). Results: C8, C12 and C16 were endowed with nanoscale, hierarchical hybrid micro-/nanoscale and microscale surface topographies with rod-like superstructures, respectively. Compared with C0, the micro-/nanotextured CHA bioceramic coatings (C8, C12 and C16) possessed excellent surface bioactivity and biocompatibility, as well as better wettability, which mediated improved protein adsorption, giving rise to simultaneous enhancement of a biological cascade of events of rat bone-marrow-derived mesenchymal stem cells including cell adhesion, proliferation, osteogenic differentiation and, notably, the production of the pro-angiogenic growth factor, vascular endothelial growth factor-A. In particular, C12 with biomimetic hierarchical hybrid micro-/nanorod topography exhibited superior fractal property and predominant performance of protein adsorption, cell adhesion, proliferation and osteogenesis concomitant with angiogenesis. Conclusion: All these results suggest that the 12 wt% CHA bioceramic coating with synergistic modification of surface chemistry and topography has great prospect for future use as implant coating to achieve optimum osseointegration for orthopedic and dental applications. Keywords: carbonated hydroxyapatite, micro-/nanohybrid topography, biomimicry, titanium implant |
format |
article |
author |
Li S Yu W Zhang W Zhang G Yu L Lu E |
author_facet |
Li S Yu W Zhang W Zhang G Yu L Lu E |
author_sort |
Li S |
title |
Evaluation of highly carbonated hydroxyapatite bioceramic implant coatings with hierarchical micro-/nanorod topography optimized for osseointegration |
title_short |
Evaluation of highly carbonated hydroxyapatite bioceramic implant coatings with hierarchical micro-/nanorod topography optimized for osseointegration |
title_full |
Evaluation of highly carbonated hydroxyapatite bioceramic implant coatings with hierarchical micro-/nanorod topography optimized for osseointegration |
title_fullStr |
Evaluation of highly carbonated hydroxyapatite bioceramic implant coatings with hierarchical micro-/nanorod topography optimized for osseointegration |
title_full_unstemmed |
Evaluation of highly carbonated hydroxyapatite bioceramic implant coatings with hierarchical micro-/nanorod topography optimized for osseointegration |
title_sort |
evaluation of highly carbonated hydroxyapatite bioceramic implant coatings with hierarchical micro-/nanorod topography optimized for osseointegration |
publisher |
Dove Medical Press |
publishDate |
2018 |
url |
https://doaj.org/article/39df8095e3a94b498ad2f97ef86725b3 |
work_keys_str_mv |
AT lis evaluationofhighlycarbonatedhydroxyapatitebioceramicimplantcoatingswithhierarchicalmicronanorodtopographyoptimizedforosseointegration AT yuw evaluationofhighlycarbonatedhydroxyapatitebioceramicimplantcoatingswithhierarchicalmicronanorodtopographyoptimizedforosseointegration AT zhangw evaluationofhighlycarbonatedhydroxyapatitebioceramicimplantcoatingswithhierarchicalmicronanorodtopographyoptimizedforosseointegration AT zhangg evaluationofhighlycarbonatedhydroxyapatitebioceramicimplantcoatingswithhierarchicalmicronanorodtopographyoptimizedforosseointegration AT yul evaluationofhighlycarbonatedhydroxyapatitebioceramicimplantcoatingswithhierarchicalmicronanorodtopographyoptimizedforosseointegration AT lue evaluationofhighlycarbonatedhydroxyapatitebioceramicimplantcoatingswithhierarchicalmicronanorodtopographyoptimizedforosseointegration |
_version_ |
1718399330352627712 |