Classification of MR-Detected Additional Lesions in Patients With Breast Cancer Using a Combination of Radiomics Analysis and Machine Learning
ObjectiveThis study was conducted in order to investigate the feasibility of using radiomics analysis (RA) with machine learning algorithms based on breast magnetic resonance (MR) images for discriminating malignant from benign MR-detected additional lesions in patients with primary breast cancer.Ma...
Guardado en:
Autores principales: | Hyo-jae Lee, Anh-Tien Nguyen, So Yeon Ki, Jong Eun Lee, Luu-Ngoc Do, Min Ho Park, Ji Shin Lee, Hye Jung Kim, Ilwoo Park, Hyo Soon Lim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/39ea7ab626464e2f96a3b96afcd71066 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Prediction of Pancreatic Neuroendocrine Tumor Grading Risk Based on Quantitative Radiomic Analysis of MR
por: Wei Li, et al.
Publicado: (2021) -
Diagnosis of Breast Cancer Using Radiomics Models Built Based on Dynamic Contrast Enhanced MRI Combined With Mammography
por: You-Fan Zhao, et al.
Publicado: (2021) -
Development and validation of a prognostic nomogram for malignant esophageal fistula based on radiomics and clinical factors
por: Chao Zhu, et al.
Publicado: (2021) -
Clinical Value of Machine Learning-Based Ultrasomics in Preoperative Differentiation Between Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma: A Multicenter Study
por: Shanshan Ren, et al.
Publicado: (2021) -
MRI-based radiomics and ADC values are related to recurrence of endometrial carcinoma: a preliminary analysis
por: Kaiyue Zhang, et al.
Publicado: (2021)