Predicting the number of dusty days around the desert wetlands in southeastern Iran using feature selection and machine learning techniques
In the past decades, some desert wetlands have become critical regions for dust production in the arid and semi-arid regions of the world. Accurate prediction of the number of dusty days (NDDs) in these areas is of great importance. The most popular method for predicting climatic and environmental v...
Guardado en:
Autores principales: | Zohre Ebrahimi-Khusfi, Ali Reza Nafarzadegan, Fatemeh Dargahian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/39ed9e7b457048f5801bb7c97af014ab |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography
por: Dariusz Majerek, et al.
Publicado: (2021) -
Experimental Analysis of GBM to Expand the Time Horizon of Irish Electricity Price Forecasts
por: Conor Lynch, et al.
Publicado: (2021) -
Ridge Estimation's Effectiveness for Multiple Linear Regression with Multicollinearity: An Investigation Using Monte-Carlo Simulations
por: O. G. Obadina, et al.
Publicado: (2021) -
Mapping Population Distribution Based on XGBoost Using Multisource Data
por: Xin Zhao, et al.
Publicado: (2021) -
Determining the contribution of environmental factors in controlling dust pollution during cold and warm months of western Iran using different data mining algorithms and game theory
por: Zohre Ebrahimi-Khusfi, et al.
Publicado: (2021)