Predicting the number of dusty days around the desert wetlands in southeastern Iran using feature selection and machine learning techniques
In the past decades, some desert wetlands have become critical regions for dust production in the arid and semi-arid regions of the world. Accurate prediction of the number of dusty days (NDDs) in these areas is of great importance. The most popular method for predicting climatic and environmental v...
Enregistré dans:
Auteurs principaux: | Zohre Ebrahimi-Khusfi, Ali Reza Nafarzadegan, Fatemeh Dargahian |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/39ed9e7b457048f5801bb7c97af014ab |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Machine Learning and Deterministic Approach to the Reflective Ultrasound Tomography
par: Dariusz Majerek, et autres
Publié: (2021) -
Experimental Analysis of GBM to Expand the Time Horizon of Irish Electricity Price Forecasts
par: Conor Lynch, et autres
Publié: (2021) -
Ridge Estimation's Effectiveness for Multiple Linear Regression with Multicollinearity: An Investigation Using Monte-Carlo Simulations
par: O. G. Obadina, et autres
Publié: (2021) -
Mapping Population Distribution Based on XGBoost Using Multisource Data
par: Xin Zhao, et autres
Publié: (2021) -
Determining the contribution of environmental factors in controlling dust pollution during cold and warm months of western Iran using different data mining algorithms and game theory
par: Zohre Ebrahimi-Khusfi, et autres
Publié: (2021)