PARS: Privacy-Aware Reward System for Mobile Crowdsensing Systems
Crowdsensing systems have been developed for wide-area sensing tasks because humancarried smartphones are prevailing and becoming capable. To encourage more people to participate in sensing tasks, various incentive mechanisms were proposed. However, participating in sensing tasks and getting rewards...
Guardado en:
Autores principales: | Zhong Zhang, Dae Hyun Yum, Minho Shin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/39f4ebd767104c4fa7a4c47caa8db3f5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spears and shields: attacking and defending deep model co-inference in vehicular crowdsensing networks
por: Maoqiang Wu, et al.
Publicado: (2021) -
RcDT: Privacy Preservation Based on R-Constrained Dummy Trajectory in Mobile Social Networks
por: Jinquan Zhang, et al.
Publicado: (2019) -
Review: Privacy-Preservation in the Context of Natural Language Processing
por: Darshini Mahendran, et al.
Publicado: (2021) -
Federated Learning for Privacy-Preserving Speaker Recognition
por: Abraham Woubie, et al.
Publicado: (2021) -
Differential Privacy for IoT-Enabled Critical Infrastructure: A Comprehensive Survey
por: Muhammad Akbar Husnoo, et al.
Publicado: (2021)