Constructing exact representations of quantum many-body systems with deep neural networks
Significant improvements in numerical methods for quantum systems often come from finding new ways of representing quantum states that can be optimized and simulated more efficiently. Here the authors demonstrate a method to calculate exact neural network representations of many-body ground states.
Guardado en:
Autores principales: | Giuseppe Carleo, Yusuke Nomura, Masatoshi Imada |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/39fa743f78674be2a91326e970938e4f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Dirac-Type Nodal Spin Liquid Revealed by Refined Quantum Many-Body Solver Using Neural-Network Wave Function, Correlation Ratio, and Level Spectroscopy
por: Yusuke Nomura, et al.
Publicado: (2021) -
Efficient representation of quantum many-body states with deep neural networks
por: Xun Gao, et al.
Publicado: (2017) -
Tensor-network approach for quantum metrology in many-body quantum systems
por: Krzysztof Chabuda, et al.
Publicado: (2020) -
Gaussian Process States: A Data-Driven Representation of Quantum Many-Body Physics
por: Aldo Glielmo, et al.
Publicado: (2020) -
Many-Body Localization and the Emergence of Quantum Darwinism
por: Nicolás Mirkin, et al.
Publicado: (2021)