Constructing exact representations of quantum many-body systems with deep neural networks
Significant improvements in numerical methods for quantum systems often come from finding new ways of representing quantum states that can be optimized and simulated more efficiently. Here the authors demonstrate a method to calculate exact neural network representations of many-body ground states.
Enregistré dans:
Auteurs principaux: | Giuseppe Carleo, Yusuke Nomura, Masatoshi Imada |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2018
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/39fa743f78674be2a91326e970938e4f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Dirac-Type Nodal Spin Liquid Revealed by Refined Quantum Many-Body Solver Using Neural-Network Wave Function, Correlation Ratio, and Level Spectroscopy
par: Yusuke Nomura, et autres
Publié: (2021) -
Efficient representation of quantum many-body states with deep neural networks
par: Xun Gao, et autres
Publié: (2017) -
Tensor-network approach for quantum metrology in many-body quantum systems
par: Krzysztof Chabuda, et autres
Publié: (2020) -
Gaussian Process States: A Data-Driven Representation of Quantum Many-Body Physics
par: Aldo Glielmo, et autres
Publié: (2020) -
Many-Body Localization and the Emergence of Quantum Darwinism
par: Nicolás Mirkin, et autres
Publié: (2021)