Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples

Abstract Optical spectroscopic techniques have been commonly used to detect the presence of biofilm-forming pathogens (bacteria and fungi) in the agro-food industry. Recently, near-infrared (NIR) spectroscopy revealed that it is also possible to detect the presence of viruses in animal and vegetal t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Emilio Gomez-Gonzalez, Beatriz Fernandez-Muñoz, Alejandro Barriga-Rivera, Jose Manuel Navas-Garcia, Isabel Fernandez-Lizaranzu, Francisco Javier Munoz-Gonzalez, Ruben Parrilla-Giraldez, Desiree Requena-Lancharro, Manuel Guerrero-Claro, Pedro Gil-Gamboa, Cristina Rosell-Valle, Carmen Gomez-Gonzalez, Maria Jose Mayorga-Buiza, Maria Martin-Lopez, Olga Muñoz, Juan Carlos Gomez Martin, Maria Isabel Relimpio Lopez, Jesus Aceituno-Castro, Manuel A. Perales-Esteve, Antonio Puppo-Moreno, Francisco Jose Garcia Cozar, Lucia Olvera-Collantes, Silvia de los Santos-Trigo, Emilia Gomez, Rosario Sanchez Pernaute, Javier Padillo-Ruiz, Javier Marquez-Rivas
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3a251ef5366b445c991b7434204b733f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3a251ef5366b445c991b7434204b733f
record_format dspace
spelling oai:doaj.org-article:3a251ef5366b445c991b7434204b733f2021-12-02T19:06:33ZHyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples10.1038/s41598-021-95756-32045-2322https://doaj.org/article/3a251ef5366b445c991b7434204b733f2021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95756-3https://doaj.org/toc/2045-2322Abstract Optical spectroscopic techniques have been commonly used to detect the presence of biofilm-forming pathogens (bacteria and fungi) in the agro-food industry. Recently, near-infrared (NIR) spectroscopy revealed that it is also possible to detect the presence of viruses in animal and vegetal tissues. Here we report a platform based on visible and NIR (VNIR) hyperspectral imaging for non-contact, reagent free detection and quantification of laboratory-engineered viral particles in fluid samples (liquid droplets and dry residue) using both partial least square-discriminant analysis and artificial feed-forward neural networks. The detection was successfully achieved in preparations of phosphate buffered solution and artificial saliva, with an equivalent pixel volume of 4 nL and lowest concentration of 800 TU· $$\upmu$$ μ L−1. This method constitutes an innovative approach that could be potentially used at point of care for rapid mass screening of viral infectious diseases and monitoring of the SARS-CoV-2 pandemic.Emilio Gomez-GonzalezBeatriz Fernandez-MuñozAlejandro Barriga-RiveraJose Manuel Navas-GarciaIsabel Fernandez-LizaranzuFrancisco Javier Munoz-GonzalezRuben Parrilla-GiraldezDesiree Requena-LancharroManuel Guerrero-ClaroPedro Gil-GamboaCristina Rosell-ValleCarmen Gomez-GonzalezMaria Jose Mayorga-BuizaMaria Martin-LopezOlga MuñozJuan Carlos Gomez MartinMaria Isabel Relimpio LopezJesus Aceituno-CastroManuel A. Perales-EsteveAntonio Puppo-MorenoFrancisco Jose Garcia CozarLucia Olvera-CollantesSilvia de los Santos-TrigoEmilia GomezRosario Sanchez PernauteJavier Padillo-RuizJavier Marquez-RivasNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Emilio Gomez-Gonzalez
Beatriz Fernandez-Muñoz
Alejandro Barriga-Rivera
Jose Manuel Navas-Garcia
Isabel Fernandez-Lizaranzu
Francisco Javier Munoz-Gonzalez
Ruben Parrilla-Giraldez
Desiree Requena-Lancharro
Manuel Guerrero-Claro
Pedro Gil-Gamboa
Cristina Rosell-Valle
Carmen Gomez-Gonzalez
Maria Jose Mayorga-Buiza
Maria Martin-Lopez
Olga Muñoz
Juan Carlos Gomez Martin
Maria Isabel Relimpio Lopez
Jesus Aceituno-Castro
Manuel A. Perales-Esteve
Antonio Puppo-Moreno
Francisco Jose Garcia Cozar
Lucia Olvera-Collantes
Silvia de los Santos-Trigo
Emilia Gomez
Rosario Sanchez Pernaute
Javier Padillo-Ruiz
Javier Marquez-Rivas
Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
description Abstract Optical spectroscopic techniques have been commonly used to detect the presence of biofilm-forming pathogens (bacteria and fungi) in the agro-food industry. Recently, near-infrared (NIR) spectroscopy revealed that it is also possible to detect the presence of viruses in animal and vegetal tissues. Here we report a platform based on visible and NIR (VNIR) hyperspectral imaging for non-contact, reagent free detection and quantification of laboratory-engineered viral particles in fluid samples (liquid droplets and dry residue) using both partial least square-discriminant analysis and artificial feed-forward neural networks. The detection was successfully achieved in preparations of phosphate buffered solution and artificial saliva, with an equivalent pixel volume of 4 nL and lowest concentration of 800 TU· $$\upmu$$ μ L−1. This method constitutes an innovative approach that could be potentially used at point of care for rapid mass screening of viral infectious diseases and monitoring of the SARS-CoV-2 pandemic.
format article
author Emilio Gomez-Gonzalez
Beatriz Fernandez-Muñoz
Alejandro Barriga-Rivera
Jose Manuel Navas-Garcia
Isabel Fernandez-Lizaranzu
Francisco Javier Munoz-Gonzalez
Ruben Parrilla-Giraldez
Desiree Requena-Lancharro
Manuel Guerrero-Claro
Pedro Gil-Gamboa
Cristina Rosell-Valle
Carmen Gomez-Gonzalez
Maria Jose Mayorga-Buiza
Maria Martin-Lopez
Olga Muñoz
Juan Carlos Gomez Martin
Maria Isabel Relimpio Lopez
Jesus Aceituno-Castro
Manuel A. Perales-Esteve
Antonio Puppo-Moreno
Francisco Jose Garcia Cozar
Lucia Olvera-Collantes
Silvia de los Santos-Trigo
Emilia Gomez
Rosario Sanchez Pernaute
Javier Padillo-Ruiz
Javier Marquez-Rivas
author_facet Emilio Gomez-Gonzalez
Beatriz Fernandez-Muñoz
Alejandro Barriga-Rivera
Jose Manuel Navas-Garcia
Isabel Fernandez-Lizaranzu
Francisco Javier Munoz-Gonzalez
Ruben Parrilla-Giraldez
Desiree Requena-Lancharro
Manuel Guerrero-Claro
Pedro Gil-Gamboa
Cristina Rosell-Valle
Carmen Gomez-Gonzalez
Maria Jose Mayorga-Buiza
Maria Martin-Lopez
Olga Muñoz
Juan Carlos Gomez Martin
Maria Isabel Relimpio Lopez
Jesus Aceituno-Castro
Manuel A. Perales-Esteve
Antonio Puppo-Moreno
Francisco Jose Garcia Cozar
Lucia Olvera-Collantes
Silvia de los Santos-Trigo
Emilia Gomez
Rosario Sanchez Pernaute
Javier Padillo-Ruiz
Javier Marquez-Rivas
author_sort Emilio Gomez-Gonzalez
title Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
title_short Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
title_full Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
title_fullStr Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
title_full_unstemmed Hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
title_sort hyperspectral image processing for the identification and quantification of lentiviral particles in fluid samples
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/3a251ef5366b445c991b7434204b733f
work_keys_str_mv AT emiliogomezgonzalez hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT beatrizfernandezmunoz hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT alejandrobarrigarivera hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT josemanuelnavasgarcia hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT isabelfernandezlizaranzu hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT franciscojaviermunozgonzalez hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT rubenparrillagiraldez hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT desireerequenalancharro hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT manuelguerreroclaro hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT pedrogilgamboa hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT cristinarosellvalle hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT carmengomezgonzalez hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT mariajosemayorgabuiza hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT mariamartinlopez hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT olgamunoz hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT juancarlosgomezmartin hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT mariaisabelrelimpiolopez hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT jesusaceitunocastro hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT manuelaperalesesteve hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT antoniopuppomoreno hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT franciscojosegarciacozar hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT luciaolveracollantes hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT silviadelossantostrigo hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT emiliagomez hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT rosariosanchezpernaute hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT javierpadilloruiz hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
AT javiermarquezrivas hyperspectralimageprocessingfortheidentificationandquantificationoflentiviralparticlesinfluidsamples
_version_ 1718377142073425920