NFAD: fixing anomaly detection using normalizing flows
Anomaly detection is a challenging task that frequently arises in practically all areas of industry and science, from fraud detection and data quality monitoring to finding rare cases of diseases and searching for new physics. Most of the conventional approaches to anomaly detection, such as one-cla...
Enregistré dans:
| Auteurs principaux: | Artem Ryzhikov, Maxim Borisyak, Andrey Ustyuzhanin, Denis Derkach |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
PeerJ Inc.
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/3a3dd334749642418df3f04c98b798a8 |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Self-Supervised Learning for Anomaly Detection With Dynamic Local Augmentation
par: Seungdong Yoa, et autres
Publié: (2021) -
Deep learning-based anomaly-onset aware remaining useful life estimation of bearings
par: Pooja Vinayak Kamat, et autres
Publié: (2021) -
Evaluation of semi-supervised learning using sparse labeling to segment cell nuclei
par: Bruch Roman, et autres
Publié: (2020) -
Review and Perspectives of Machine Learning Methods for Wind Turbine Fault Diagnosis
par: Mingzhu Tang, et autres
Publié: (2021) -
Anomaly sign detection by monitoring thousands of process values using a two-stage autoencoder
par: Susumu NAITO, et autres
Publié: (2021)