An efficient and accurate distributed learning algorithm for modeling multi-site zero-inflated count outcomes
Abstract Clinical research networks (CRNs), made up of multiple healthcare systems each with patient data from several care sites, are beneficial for studying rare outcomes and increasing generalizability of results. While CRNs encourage sharing aggregate data across healthcare systems, individual s...
Guardado en:
Autores principales: | Mackenzie J. Edmondson, Chongliang Luo, Rui Duan, Mitchell Maltenfort, Zhaoyi Chen, Kenneth Locke, Justine Shults, Jiang Bian, Patrick B. Ryan, Christopher B. Forrest, Yong Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3a78a1579acc457c9233ae9b78dfb276 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Randomized quantile residuals for diagnosing zero-inflated generalized linear mixed models with applications to microbiome count data
por: Wei Bai, et al.
Publicado: (2021) -
Risk of adverse events in gastrointestinal endoscopy: Zero-inflated Poisson regression mixture model for count data and multinomial logit model for the type of event.
por: Marco Gemma, et al.
Publicado: (2021) -
Counting certain quadratic partitions of zero modulo a prime number
por: Xiao Wang, et al.
Publicado: (2021) -
A zero inflated log-normal model for inference of sparse microbial association networks.
por: Vincent Prost, et al.
Publicado: (2021) -
Estimating the burden of malaria in Senegal: Bayesian zero-inflated binomial geostatistical modeling of the MIS 2008 data.
por: Federica Giardina, et al.
Publicado: (2012)