A negative binomial regression model for risk estimation of 0–2 axillary lymph node metastases in breast cancer patients

Abstract Extensive clinical trials indicate that patients with negative sentinel lymph node biopsy do not need axillary lymph node dissection (ALND). However, the ACOSOG Z0011 trial indicates that patients with clinically negative axillary lymph nodes (ALNs) and 1–2 positive sentinel lymph nodes hav...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: De Zeng, Hao-Yu Lin, Yu-Ling Zhang, Jun-Dong Wu, Kun Lin, Ya Xu, Chun-Fa Chen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3a7c45db41e544efa00cbce9103b0624
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3a7c45db41e544efa00cbce9103b0624
record_format dspace
spelling oai:doaj.org-article:3a7c45db41e544efa00cbce9103b06242021-12-02T13:58:25ZA negative binomial regression model for risk estimation of 0–2 axillary lymph node metastases in breast cancer patients10.1038/s41598-020-79016-42045-2322https://doaj.org/article/3a7c45db41e544efa00cbce9103b06242020-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-79016-4https://doaj.org/toc/2045-2322Abstract Extensive clinical trials indicate that patients with negative sentinel lymph node biopsy do not need axillary lymph node dissection (ALND). However, the ACOSOG Z0011 trial indicates that patients with clinically negative axillary lymph nodes (ALNs) and 1–2 positive sentinel lymph nodes having breast conserving surgery with whole breast radiotherapy do not benefit from ALND. The aim of this study is therefore to identify those patients with 0–2 positive nodes who might avoid ALND. A total of 486 patients were eligible for the study with 212 patients in the modeling group and 274 patients in the validation group, respectively. Clinical lymph node status, histologic grade, estrogen receptor status, and human epidermal growth factor receptor 2 status were found to be significantly associated with ALN metastasis. A negative binomial regression (NBR) model was developed to predict the probability of having 0–2 ALN metastases with the area under the curve of 0.881 (95% confidence interval 0.829–0.921, P < 0.001) in the modeling group and 0.758 (95% confidence interval 0.702–0.807, P < 0.001) in the validation group. Decision curve analysis demonstrated that the model was clinically useful. The NBR model demonstrated adequate discriminative ability and clinical utility for predicting 0–2 ALN metastases.De ZengHao-Yu LinYu-Ling ZhangJun-Dong WuKun LinYa XuChun-Fa ChenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-11 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
De Zeng
Hao-Yu Lin
Yu-Ling Zhang
Jun-Dong Wu
Kun Lin
Ya Xu
Chun-Fa Chen
A negative binomial regression model for risk estimation of 0–2 axillary lymph node metastases in breast cancer patients
description Abstract Extensive clinical trials indicate that patients with negative sentinel lymph node biopsy do not need axillary lymph node dissection (ALND). However, the ACOSOG Z0011 trial indicates that patients with clinically negative axillary lymph nodes (ALNs) and 1–2 positive sentinel lymph nodes having breast conserving surgery with whole breast radiotherapy do not benefit from ALND. The aim of this study is therefore to identify those patients with 0–2 positive nodes who might avoid ALND. A total of 486 patients were eligible for the study with 212 patients in the modeling group and 274 patients in the validation group, respectively. Clinical lymph node status, histologic grade, estrogen receptor status, and human epidermal growth factor receptor 2 status were found to be significantly associated with ALN metastasis. A negative binomial regression (NBR) model was developed to predict the probability of having 0–2 ALN metastases with the area under the curve of 0.881 (95% confidence interval 0.829–0.921, P < 0.001) in the modeling group and 0.758 (95% confidence interval 0.702–0.807, P < 0.001) in the validation group. Decision curve analysis demonstrated that the model was clinically useful. The NBR model demonstrated adequate discriminative ability and clinical utility for predicting 0–2 ALN metastases.
format article
author De Zeng
Hao-Yu Lin
Yu-Ling Zhang
Jun-Dong Wu
Kun Lin
Ya Xu
Chun-Fa Chen
author_facet De Zeng
Hao-Yu Lin
Yu-Ling Zhang
Jun-Dong Wu
Kun Lin
Ya Xu
Chun-Fa Chen
author_sort De Zeng
title A negative binomial regression model for risk estimation of 0–2 axillary lymph node metastases in breast cancer patients
title_short A negative binomial regression model for risk estimation of 0–2 axillary lymph node metastases in breast cancer patients
title_full A negative binomial regression model for risk estimation of 0–2 axillary lymph node metastases in breast cancer patients
title_fullStr A negative binomial regression model for risk estimation of 0–2 axillary lymph node metastases in breast cancer patients
title_full_unstemmed A negative binomial regression model for risk estimation of 0–2 axillary lymph node metastases in breast cancer patients
title_sort negative binomial regression model for risk estimation of 0–2 axillary lymph node metastases in breast cancer patients
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/3a7c45db41e544efa00cbce9103b0624
work_keys_str_mv AT dezeng anegativebinomialregressionmodelforriskestimationof02axillarylymphnodemetastasesinbreastcancerpatients
AT haoyulin anegativebinomialregressionmodelforriskestimationof02axillarylymphnodemetastasesinbreastcancerpatients
AT yulingzhang anegativebinomialregressionmodelforriskestimationof02axillarylymphnodemetastasesinbreastcancerpatients
AT jundongwu anegativebinomialregressionmodelforriskestimationof02axillarylymphnodemetastasesinbreastcancerpatients
AT kunlin anegativebinomialregressionmodelforriskestimationof02axillarylymphnodemetastasesinbreastcancerpatients
AT yaxu anegativebinomialregressionmodelforriskestimationof02axillarylymphnodemetastasesinbreastcancerpatients
AT chunfachen anegativebinomialregressionmodelforriskestimationof02axillarylymphnodemetastasesinbreastcancerpatients
AT dezeng negativebinomialregressionmodelforriskestimationof02axillarylymphnodemetastasesinbreastcancerpatients
AT haoyulin negativebinomialregressionmodelforriskestimationof02axillarylymphnodemetastasesinbreastcancerpatients
AT yulingzhang negativebinomialregressionmodelforriskestimationof02axillarylymphnodemetastasesinbreastcancerpatients
AT jundongwu negativebinomialregressionmodelforriskestimationof02axillarylymphnodemetastasesinbreastcancerpatients
AT kunlin negativebinomialregressionmodelforriskestimationof02axillarylymphnodemetastasesinbreastcancerpatients
AT yaxu negativebinomialregressionmodelforriskestimationof02axillarylymphnodemetastasesinbreastcancerpatients
AT chunfachen negativebinomialregressionmodelforriskestimationof02axillarylymphnodemetastasesinbreastcancerpatients
_version_ 1718392192658046976