High protein copy number is required to suppress stochasticity in the cyanobacterial circadian clock
Circadian clocks must maintain their fidelity despite stochasticity arising from finite protein copy numbers. Here, the authors show that a small cyanobacterium relies on an environmentally driven timer likely because its low protein copy numbers cannot support an accurate free-running clock.
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3a859e07eb4d4af4bc8e956db6348805 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Circadian clocks must maintain their fidelity despite stochasticity arising from finite protein copy numbers. Here, the authors show that a small cyanobacterium relies on an environmentally driven timer likely because its low protein copy numbers cannot support an accurate free-running clock. |
---|