“Aerobic glycolytic imaging” of human gliomas using combined pH-, oxygen-, and perfusion-weighted magnetic resonance imaging

Purpose: To quantify abnormal metabolism of diffuse gliomas using “aerobic glycolytic imaging” and investigate its biological correlation. Methods: All subjects underwent a pH-weighted amine chemical exchange saturation transfer spin-and-gradient-echo echoplanar imaging (CEST-SAGE-EPI) and dynamic s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Akifumi Hagiwara, Jingwen Yao, Catalina Raymond, Nicholas S. Cho, Richard Everson, Kunal Patel, Danielle H. Morrow, Brandon R. Desousa, Sergey Mareninov, Saewon Chun, David A. Nathanson, William H. Yong, Gafita Andrei, Ajit S. Divakaruni, Noriko Salamon, Whitney B. Pope, Phioanh L. Nghiemphu, Linda M. Liau, Timothy F. Cloughesy, Benjamin M. Ellingson
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
IDH
Acceso en línea:https://doaj.org/article/3a999258d2bc481387426316d578c77d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3a999258d2bc481387426316d578c77d
record_format dspace
spelling oai:doaj.org-article:3a999258d2bc481387426316d578c77d2021-11-22T04:25:00Z“Aerobic glycolytic imaging” of human gliomas using combined pH-, oxygen-, and perfusion-weighted magnetic resonance imaging2213-158210.1016/j.nicl.2021.102882https://doaj.org/article/3a999258d2bc481387426316d578c77d2021-01-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2213158221003260https://doaj.org/toc/2213-1582Purpose: To quantify abnormal metabolism of diffuse gliomas using “aerobic glycolytic imaging” and investigate its biological correlation. Methods: All subjects underwent a pH-weighted amine chemical exchange saturation transfer spin-and-gradient-echo echoplanar imaging (CEST-SAGE-EPI) and dynamic susceptibility contrast perfusion MRI. Relative oxygen extraction fraction (rOEF) was estimated as the ratio of reversible transverse relaxation rate R2′ to normalized relative cerebral blood volume. An aerobic glycolytic index (AGI) was derived by the ratio of pH-weighted image contrast (MTRasym at 3.0 ppm) to rOEF. AGI was compared between different tumor types (N = 51, 30 IDH mutant and 21 IDH wild type). Metabolic MR parameters were correlated with 18F-FDG uptake (N = 8, IDH wild-type glioblastoma), expression of key glycolytic proteins using immunohistochemistry (N = 38 samples, 21 from IDH mutant and 17 from IDH wild type), and bioenergetics analysis on purified tumor cells (N = 7, IDH wild-type high grade). Results: AGI was significantly lower in IDH mutant than wild-type gliomas (0.48 ± 0.48 vs. 0.70 ± 0.48; P = 0.03). AGI was strongly correlated with 18F-FDG uptake both in non-enhancing tumor (Spearman, ρ = 0.81; P = 0.01) and enhancing tumor (ρ = 0.81; P = 0.01). AGI was significantly correlated with glucose transporter 3 (ρ = 0.71; P = 0.004) and hexokinase 2 (ρ = 0.73; P = 0.003) in IDH wild-type glioma, and monocarboxylate transporter 1 (ρ = 0.59; P = 0.009) in IDH mutant glioma. Additionally, a significant correlation was found between AGI derived from bioenergetics analysis and that estimated from MRI (ρ = 0.79; P = 0.04). Conclusion: AGI derived from molecular MRI was correlated with glucose uptake (18F-FDG and glucose transporter 3/hexokinase 2) and cellular AGI in IDH wild-type gliomas, whereas AGI in IDH mutant gliomas appeared associated with monocarboxylate transporter density.Akifumi HagiwaraJingwen YaoCatalina RaymondNicholas S. ChoRichard EversonKunal PatelDanielle H. MorrowBrandon R. DesousaSergey MareninovSaewon ChunDavid A. NathansonWilliam H. YongGafita AndreiAjit S. DivakaruniNoriko SalamonWhitney B. PopePhioanh L. NghiemphuLinda M. LiauTimothy F. CloughesyBenjamin M. EllingsonElsevierarticleAerobic glycolysisamine CEST18FDG-PETGlioblasomaGliomaIDHComputer applications to medicine. Medical informaticsR858-859.7Neurology. Diseases of the nervous systemRC346-429ENNeuroImage: Clinical, Vol 32, Iss , Pp 102882- (2021)
institution DOAJ
collection DOAJ
language EN
topic Aerobic glycolysis
amine CEST
18FDG-PET
Glioblasoma
Glioma
IDH
Computer applications to medicine. Medical informatics
R858-859.7
Neurology. Diseases of the nervous system
RC346-429
spellingShingle Aerobic glycolysis
amine CEST
18FDG-PET
Glioblasoma
Glioma
IDH
Computer applications to medicine. Medical informatics
R858-859.7
Neurology. Diseases of the nervous system
RC346-429
Akifumi Hagiwara
Jingwen Yao
Catalina Raymond
Nicholas S. Cho
Richard Everson
Kunal Patel
Danielle H. Morrow
Brandon R. Desousa
Sergey Mareninov
Saewon Chun
David A. Nathanson
William H. Yong
Gafita Andrei
Ajit S. Divakaruni
Noriko Salamon
Whitney B. Pope
Phioanh L. Nghiemphu
Linda M. Liau
Timothy F. Cloughesy
Benjamin M. Ellingson
“Aerobic glycolytic imaging” of human gliomas using combined pH-, oxygen-, and perfusion-weighted magnetic resonance imaging
description Purpose: To quantify abnormal metabolism of diffuse gliomas using “aerobic glycolytic imaging” and investigate its biological correlation. Methods: All subjects underwent a pH-weighted amine chemical exchange saturation transfer spin-and-gradient-echo echoplanar imaging (CEST-SAGE-EPI) and dynamic susceptibility contrast perfusion MRI. Relative oxygen extraction fraction (rOEF) was estimated as the ratio of reversible transverse relaxation rate R2′ to normalized relative cerebral blood volume. An aerobic glycolytic index (AGI) was derived by the ratio of pH-weighted image contrast (MTRasym at 3.0 ppm) to rOEF. AGI was compared between different tumor types (N = 51, 30 IDH mutant and 21 IDH wild type). Metabolic MR parameters were correlated with 18F-FDG uptake (N = 8, IDH wild-type glioblastoma), expression of key glycolytic proteins using immunohistochemistry (N = 38 samples, 21 from IDH mutant and 17 from IDH wild type), and bioenergetics analysis on purified tumor cells (N = 7, IDH wild-type high grade). Results: AGI was significantly lower in IDH mutant than wild-type gliomas (0.48 ± 0.48 vs. 0.70 ± 0.48; P = 0.03). AGI was strongly correlated with 18F-FDG uptake both in non-enhancing tumor (Spearman, ρ = 0.81; P = 0.01) and enhancing tumor (ρ = 0.81; P = 0.01). AGI was significantly correlated with glucose transporter 3 (ρ = 0.71; P = 0.004) and hexokinase 2 (ρ = 0.73; P = 0.003) in IDH wild-type glioma, and monocarboxylate transporter 1 (ρ = 0.59; P = 0.009) in IDH mutant glioma. Additionally, a significant correlation was found between AGI derived from bioenergetics analysis and that estimated from MRI (ρ = 0.79; P = 0.04). Conclusion: AGI derived from molecular MRI was correlated with glucose uptake (18F-FDG and glucose transporter 3/hexokinase 2) and cellular AGI in IDH wild-type gliomas, whereas AGI in IDH mutant gliomas appeared associated with monocarboxylate transporter density.
format article
author Akifumi Hagiwara
Jingwen Yao
Catalina Raymond
Nicholas S. Cho
Richard Everson
Kunal Patel
Danielle H. Morrow
Brandon R. Desousa
Sergey Mareninov
Saewon Chun
David A. Nathanson
William H. Yong
Gafita Andrei
Ajit S. Divakaruni
Noriko Salamon
Whitney B. Pope
Phioanh L. Nghiemphu
Linda M. Liau
Timothy F. Cloughesy
Benjamin M. Ellingson
author_facet Akifumi Hagiwara
Jingwen Yao
Catalina Raymond
Nicholas S. Cho
Richard Everson
Kunal Patel
Danielle H. Morrow
Brandon R. Desousa
Sergey Mareninov
Saewon Chun
David A. Nathanson
William H. Yong
Gafita Andrei
Ajit S. Divakaruni
Noriko Salamon
Whitney B. Pope
Phioanh L. Nghiemphu
Linda M. Liau
Timothy F. Cloughesy
Benjamin M. Ellingson
author_sort Akifumi Hagiwara
title “Aerobic glycolytic imaging” of human gliomas using combined pH-, oxygen-, and perfusion-weighted magnetic resonance imaging
title_short “Aerobic glycolytic imaging” of human gliomas using combined pH-, oxygen-, and perfusion-weighted magnetic resonance imaging
title_full “Aerobic glycolytic imaging” of human gliomas using combined pH-, oxygen-, and perfusion-weighted magnetic resonance imaging
title_fullStr “Aerobic glycolytic imaging” of human gliomas using combined pH-, oxygen-, and perfusion-weighted magnetic resonance imaging
title_full_unstemmed “Aerobic glycolytic imaging” of human gliomas using combined pH-, oxygen-, and perfusion-weighted magnetic resonance imaging
title_sort “aerobic glycolytic imaging” of human gliomas using combined ph-, oxygen-, and perfusion-weighted magnetic resonance imaging
publisher Elsevier
publishDate 2021
url https://doaj.org/article/3a999258d2bc481387426316d578c77d
work_keys_str_mv AT akifumihagiwara aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT jingwenyao aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT catalinaraymond aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT nicholasscho aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT richardeverson aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT kunalpatel aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT daniellehmorrow aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT brandonrdesousa aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT sergeymareninov aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT saewonchun aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT davidanathanson aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT williamhyong aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT gafitaandrei aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT ajitsdivakaruni aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT norikosalamon aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT whitneybpope aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT phioanhlnghiemphu aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT lindamliau aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT timothyfcloughesy aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
AT benjaminmellingson aerobicglycolyticimagingofhumangliomasusingcombinedphoxygenandperfusionweightedmagneticresonanceimaging
_version_ 1718418216101871616