Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials
Sangiliyandi Gurunathan, Jin-Hoi Kim Stem Cell and Regenerative Biology, Konkuk University, Seoul, Republic of Korea Abstract: Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique pro...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3aa7f035943e45eeb3e5ba67a7a41039 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3aa7f035943e45eeb3e5ba67a7a41039 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3aa7f035943e45eeb3e5ba67a7a410392021-12-02T00:43:23ZSynthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials1178-2013https://doaj.org/article/3aa7f035943e45eeb3e5ba67a7a410392016-05-01T00:00:00Zhttps://www.dovepress.com/synthesis-toxicity-biocompatibility-and-biomedical-applications-of-gra-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Sangiliyandi Gurunathan, Jin-Hoi Kim Stem Cell and Regenerative Biology, Konkuk University, Seoul, Republic of Korea Abstract: Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications. Keywords: biomedical applications, cancer therapy, drug delivery, graphene, graphene-related materials, tissue engineering, toxicity Gurunathan SKim JHDove Medical PressarticleGraphenegraphene oxidecancer therapydrug deliverytoxicitytissue engineeringbiomedical applications.Medicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2016, Iss default, Pp 1927-1945 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Graphene graphene oxide cancer therapy drug delivery toxicity tissue engineering biomedical applications. Medicine (General) R5-920 |
spellingShingle |
Graphene graphene oxide cancer therapy drug delivery toxicity tissue engineering biomedical applications. Medicine (General) R5-920 Gurunathan S Kim JH Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials |
description |
Sangiliyandi Gurunathan, Jin-Hoi Kim Stem Cell and Regenerative Biology, Konkuk University, Seoul, Republic of Korea Abstract: Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications. Keywords: biomedical applications, cancer therapy, drug delivery, graphene, graphene-related materials, tissue engineering, toxicity |
format |
article |
author |
Gurunathan S Kim JH |
author_facet |
Gurunathan S Kim JH |
author_sort |
Gurunathan S |
title |
Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials |
title_short |
Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials |
title_full |
Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials |
title_fullStr |
Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials |
title_full_unstemmed |
Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials |
title_sort |
synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials |
publisher |
Dove Medical Press |
publishDate |
2016 |
url |
https://doaj.org/article/3aa7f035943e45eeb3e5ba67a7a41039 |
work_keys_str_mv |
AT gurunathans synthesistoxicitybiocompatibilityandbiomedicalapplicationsofgrapheneandgraphenerelatedmaterials AT kimjh synthesistoxicitybiocompatibilityandbiomedicalapplicationsofgrapheneandgraphenerelatedmaterials |
_version_ |
1718403486425546752 |