Detecting sample swaps in diverse NGS data types using linkage disequilibrium
Parallelized analysis in clinical genomics can lead to sample or data mislabelling, and could have serious downstream consequences. Here the authors present a tool to quantify sample genetic relatedness and detect such mistakes, and apply it to thousands of datasets from the ENCODE consortium.
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3aac3ad4af5c44bbbcff502de0819ea0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Parallelized analysis in clinical genomics can lead to sample or data mislabelling, and could have serious downstream consequences. Here the authors present a tool to quantify sample genetic relatedness and detect such mistakes, and apply it to thousands of datasets from the ENCODE consortium. |
---|