Hyperspectral Unmixing Based on Spectral and Sparse Deep Convolutional Neural Networks
Hyperspectral unmixing refers to the process of obtaining endmembers and abundance vectors through linear or nonlinear models. The traditional linear unmixing model assumes that each mixed pixel can be represented by a linear combination of endmembers. Considering real-world situations, a sparse con...
Guardado en:
Autores principales: | Lulu Wan, Tao Chen, Antonio Plaza, Haojie Cai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3ab52ff928214e38a290134dfd635142 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Constrained Nonnegative Matrix Factorization for Blind Hyperspectral Unmixing Incorporating Endmember Independence
por: E. M. M. B. Ekanayake, et al.
Publicado: (2021) -
A New Convolutional Kernel Classifier for Hyperspectral Image Classification
por: Mohsen Ansari, et al.
Publicado: (2021) -
Patch-Free Bilateral Network for Hyperspectral Image Classification Using Limited Samples
por: Bing Liu, et al.
Publicado: (2021) -
LiteSCANet: An Efficient Lightweight Network Based on Spectral and Channel-Wise Attention for Hyperspectral Image Classification
por: Su Qiao, et al.
Publicado: (2021) -
Multisensor Land Cover Classification With Sparsely Annotated Data Based on Convolutional Neural Networks and Self-Distillation
por: Yawogan Jean Eudes Gbodjo, et al.
Publicado: (2021)