Deep learning framework for material design space exploration using active transfer learning and data augmentation

Abstract Neural network-based generative models have been actively investigated as an inverse design method for finding novel materials in a vast design space. However, the applicability of conventional generative models is limited because they cannot access data outside the range of training sets....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yongtae Kim, Youngsoo Kim, Charles Yang, Kundo Park, Grace X. Gu, Seunghwa Ryu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/3abb3c18732c4ddb864b7c0fbbb2e5e1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares