Deep learning framework for material design space exploration using active transfer learning and data augmentation
Abstract Neural network-based generative models have been actively investigated as an inverse design method for finding novel materials in a vast design space. However, the applicability of conventional generative models is limited because they cannot access data outside the range of training sets....
Guardado en:
Autores principales: | Yongtae Kim, Youngsoo Kim, Charles Yang, Kundo Park, Grace X. Gu, Seunghwa Ryu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3abb3c18732c4ddb864b7c0fbbb2e5e1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A general and transferable deep learning framework for predicting phase formation in materials
por: Shuo Feng, et al.
Publicado: (2021) -
INDEEDopt: a deep learning-based ReaxFF parameterization framework
por: Mert Y. Sengul, et al.
Publicado: (2021) -
Predicting adsorption ability of adsorbents at arbitrary sites for pollutants using deep transfer learning
por: Zhilong Wang, et al.
Publicado: (2021) -
A machine learning framework for damage mechanism identification from acoustic emissions in unidirectional SiC/SiC composites
por: C. Muir, et al.
Publicado: (2021) -
Identification of crystal symmetry from noisy diffraction patterns by a shape analysis and deep learning
por: Leslie Ching Ow Tiong, et al.
Publicado: (2020)