Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence

Knowing the photophysics of thermally-activated delayed fluorescence (TADF) is crucial when designing organic light emitting diodes. Here the authors show that spin orbit coupling in TADF materials is described by a second order vibronic coupling mechanism, and demonstrate the importance of resonanc...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marc K. Etherington, Jamie Gibson, Heather F. Higginbotham, Thomas J. Penfold, Andrew P. Monkman
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/3abe5e68e1034e658db51689cca04181
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3abe5e68e1034e658db51689cca04181
record_format dspace
spelling oai:doaj.org-article:3abe5e68e1034e658db51689cca041812021-12-02T17:32:22ZRevealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence10.1038/ncomms136802041-1723https://doaj.org/article/3abe5e68e1034e658db51689cca041812016-11-01T00:00:00Zhttps://doi.org/10.1038/ncomms13680https://doaj.org/toc/2041-1723Knowing the photophysics of thermally-activated delayed fluorescence (TADF) is crucial when designing organic light emitting diodes. Here the authors show that spin orbit coupling in TADF materials is described by a second order vibronic coupling mechanism, and demonstrate the importance of resonance effects to achieve efficient TADF.Marc K. EtheringtonJamie GibsonHeather F. HigginbothamThomas J. PenfoldAndrew P. MonkmanNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-7 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Marc K. Etherington
Jamie Gibson
Heather F. Higginbotham
Thomas J. Penfold
Andrew P. Monkman
Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence
description Knowing the photophysics of thermally-activated delayed fluorescence (TADF) is crucial when designing organic light emitting diodes. Here the authors show that spin orbit coupling in TADF materials is described by a second order vibronic coupling mechanism, and demonstrate the importance of resonance effects to achieve efficient TADF.
format article
author Marc K. Etherington
Jamie Gibson
Heather F. Higginbotham
Thomas J. Penfold
Andrew P. Monkman
author_facet Marc K. Etherington
Jamie Gibson
Heather F. Higginbotham
Thomas J. Penfold
Andrew P. Monkman
author_sort Marc K. Etherington
title Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence
title_short Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence
title_full Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence
title_fullStr Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence
title_full_unstemmed Revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence
title_sort revealing the spin–vibronic coupling mechanism of thermally activated delayed fluorescence
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/3abe5e68e1034e658db51689cca04181
work_keys_str_mv AT marcketherington revealingthespinvibroniccouplingmechanismofthermallyactivateddelayedfluorescence
AT jamiegibson revealingthespinvibroniccouplingmechanismofthermallyactivateddelayedfluorescence
AT heatherfhigginbotham revealingthespinvibroniccouplingmechanismofthermallyactivateddelayedfluorescence
AT thomasjpenfold revealingthespinvibroniccouplingmechanismofthermallyactivateddelayedfluorescence
AT andrewpmonkman revealingthespinvibroniccouplingmechanismofthermallyactivateddelayedfluorescence
_version_ 1718380302886240256