Several explicit formulas for (degenerate) Narumi and Cauchy polynomials and numbers
In this paper, with the aid of the Faà di Bruno formula and by virtue of properties of the Bell polynomials of the second kind, the authors define a kind of notion of degenerate Narumi numbers and polynomials, establish explicit formulas for degenerate Narumi numbers and polynomials, and derive expl...
Guardado en:
Autores principales: | Qi Feng, Dağlı Muhammet Cihat, Lim Dongkyu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3acf51459d5f4ee98c069b9881a2cabd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fully degenerate Bell polynomials associated with degenerate Poisson random variables
por: Kim Hye Kyung
Publicado: (2021) -
Poly-central factorial sequences and poly-central-Bell polynomials
por: Hye Kyung Kim, et al.
Publicado: (2021) -
Statistically pre-Cauchy Fuzzy real-valued sequences defined by Orlicz function
por: Jyoti Dutta,Amar, et al.
Publicado: (2014) -
A note on polyexponential and unipoly Bernoulli polynomials of the second kind
por: Ma Minyoung, et al.
Publicado: (2021) -
λ-quasi Cauchy sequence of fuzzy numbers
por: Baruah,Achyutananda, et al.
Publicado: (2021)