No evidence of effects or interaction between the widely used herbicide, glyphosate, and a common parasite in bumble bees

Background Glyphosate is the world’s most used pesticide and it is used without the mitigation measures that could reduce the exposure of pollinators to it. However, studies are starting to suggest negative impacts of this pesticide on bees, an essential group of pollinators. Accordingly, whether gl...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Edward A. Straw, Mark J.F. Brown
Formato: article
Lenguaje:EN
Publicado: PeerJ Inc. 2021
Materias:
R
Acceso en línea:https://doaj.org/article/3ad3754f7e4a4436bda4ca97643316ba
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3ad3754f7e4a4436bda4ca97643316ba
record_format dspace
spelling oai:doaj.org-article:3ad3754f7e4a4436bda4ca97643316ba2021-11-19T15:05:13ZNo evidence of effects or interaction between the widely used herbicide, glyphosate, and a common parasite in bumble bees10.7717/peerj.124862167-8359https://doaj.org/article/3ad3754f7e4a4436bda4ca97643316ba2021-11-01T00:00:00Zhttps://peerj.com/articles/12486.pdfhttps://peerj.com/articles/12486/https://doaj.org/toc/2167-8359Background Glyphosate is the world’s most used pesticide and it is used without the mitigation measures that could reduce the exposure of pollinators to it. However, studies are starting to suggest negative impacts of this pesticide on bees, an essential group of pollinators. Accordingly, whether glyphosate, alone or alongside other stressors, is detrimental to bee health is a vital question. Bees are suffering declines across the globe, and pesticides, including glyphosate, have been suggested as being factors in these declines. Methods Here we test, across a range of experimental paradigms, whether glyphosate impacts a wild bumble bee species, Bombus terrestris. In addition, we build upon existing work with honey bees testing glyphosate-parasite interactions by conducting fully crossed experiments with glyphosate and a common bumble bee trypanosome gut parasite, Crithidia bombi. We utilised regulatory acute toxicity testing protocols, modified to allow for exposure to multiple stressors. These protocols are expanded upon to test for effects on long term survival (20 days). Microcolony testing, using unmated workers, was employed to measure the impacts of either stressor on a proxy of reproductive success. This microcolony testing was conducted with both acute and chronic exposure to cover a range of exposure scenarios. Results We found no effects of acute or chronic exposure to glyphosate, over a range of timespans post-exposure, on mortality or a range of sublethal metrics. We also found no interaction between glyphosate and Crithidia bombi in any metric, although there was conflicting evidence of increased parasite intensity after an acute exposure to glyphosate. In contrast to published literature, we found no direct impacts of this parasite on bee health. Our testing focussed on mortality and worker reproduction, so impacts of either or both of these stressors on other sublethal metrics could still exist. Conclusions Our results expand the current knowledge on glyphosate by testing a previously untested species, Bombus terrestris, using acute exposure, and by incorporating a parasite never before tested alongside glyphosate. In conclusion our results find that glyphosate, as an active ingredient, is unlikely to be harmful to bumble bees either alone, or alongside Crithidia bombi.Edward A. StrawMark J.F. BrownPeerJ Inc.articleBeesPesticidesGlyphosateHerbicidesCrithidiaMultiple stressorsMedicineRENPeerJ, Vol 9, p e12486 (2021)
institution DOAJ
collection DOAJ
language EN
topic Bees
Pesticides
Glyphosate
Herbicides
Crithidia
Multiple stressors
Medicine
R
spellingShingle Bees
Pesticides
Glyphosate
Herbicides
Crithidia
Multiple stressors
Medicine
R
Edward A. Straw
Mark J.F. Brown
No evidence of effects or interaction between the widely used herbicide, glyphosate, and a common parasite in bumble bees
description Background Glyphosate is the world’s most used pesticide and it is used without the mitigation measures that could reduce the exposure of pollinators to it. However, studies are starting to suggest negative impacts of this pesticide on bees, an essential group of pollinators. Accordingly, whether glyphosate, alone or alongside other stressors, is detrimental to bee health is a vital question. Bees are suffering declines across the globe, and pesticides, including glyphosate, have been suggested as being factors in these declines. Methods Here we test, across a range of experimental paradigms, whether glyphosate impacts a wild bumble bee species, Bombus terrestris. In addition, we build upon existing work with honey bees testing glyphosate-parasite interactions by conducting fully crossed experiments with glyphosate and a common bumble bee trypanosome gut parasite, Crithidia bombi. We utilised regulatory acute toxicity testing protocols, modified to allow for exposure to multiple stressors. These protocols are expanded upon to test for effects on long term survival (20 days). Microcolony testing, using unmated workers, was employed to measure the impacts of either stressor on a proxy of reproductive success. This microcolony testing was conducted with both acute and chronic exposure to cover a range of exposure scenarios. Results We found no effects of acute or chronic exposure to glyphosate, over a range of timespans post-exposure, on mortality or a range of sublethal metrics. We also found no interaction between glyphosate and Crithidia bombi in any metric, although there was conflicting evidence of increased parasite intensity after an acute exposure to glyphosate. In contrast to published literature, we found no direct impacts of this parasite on bee health. Our testing focussed on mortality and worker reproduction, so impacts of either or both of these stressors on other sublethal metrics could still exist. Conclusions Our results expand the current knowledge on glyphosate by testing a previously untested species, Bombus terrestris, using acute exposure, and by incorporating a parasite never before tested alongside glyphosate. In conclusion our results find that glyphosate, as an active ingredient, is unlikely to be harmful to bumble bees either alone, or alongside Crithidia bombi.
format article
author Edward A. Straw
Mark J.F. Brown
author_facet Edward A. Straw
Mark J.F. Brown
author_sort Edward A. Straw
title No evidence of effects or interaction between the widely used herbicide, glyphosate, and a common parasite in bumble bees
title_short No evidence of effects or interaction between the widely used herbicide, glyphosate, and a common parasite in bumble bees
title_full No evidence of effects or interaction between the widely used herbicide, glyphosate, and a common parasite in bumble bees
title_fullStr No evidence of effects or interaction between the widely used herbicide, glyphosate, and a common parasite in bumble bees
title_full_unstemmed No evidence of effects or interaction between the widely used herbicide, glyphosate, and a common parasite in bumble bees
title_sort no evidence of effects or interaction between the widely used herbicide, glyphosate, and a common parasite in bumble bees
publisher PeerJ Inc.
publishDate 2021
url https://doaj.org/article/3ad3754f7e4a4436bda4ca97643316ba
work_keys_str_mv AT edwardastraw noevidenceofeffectsorinteractionbetweenthewidelyusedherbicideglyphosateandacommonparasiteinbumblebees
AT markjfbrown noevidenceofeffectsorinteractionbetweenthewidelyusedherbicideglyphosateandacommonparasiteinbumblebees
_version_ 1718420004825726976