Application of machine learning algorithms for flood susceptibility assessment and risk management
Assessing floods and their likely impact in climate change scenarios will enable the facilitation of sustainable management strategies. In this study, five machine learning (ML) algorithms, namely (i) Logistic Regression, (ii) Support Vector Machine, (iii) K-nearest neighbor, (iv) Adaptive Boosting...
Guardado en:
Autores principales: | R. Madhuri, S. Sistla, K. Srinivasa Raju |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3aee8eec651f4f93b535825cfc338841 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multiobjective optimisation and cluster analysis in placement of best management practices in an urban flooding scenario
por: Rohit Dwivedula, et al.
Publicado: (2021) -
Future climate change impacts on runoff of scarcely gauged Jhelum river basin using SDSM and RCPs
por: Saira Munawar, et al.
Publicado: (2021) -
Evaluating the effects of climate change on precipitation and temperature for Iran using RCP scenarios
por: Shahab Doulabian, et al.
Publicado: (2021) -
Integrated flood risk assessment of the Arial Khan River under changing climate using IPCC AR5 risk framework
por: Binata Roy, et al.
Publicado: (2021) -
Redesign of stormwater collection canal based on flood exceedance probability using the ant colony optimization: study area of eastern Tehran metropolis
por: Sara Azargashb Lord, et al.
Publicado: (2021)