Medical imaging deep learning with differential privacy
Abstract The successful training of deep learning models for diagnostic deployment in medical imaging applications requires large volumes of data. Such data cannot be procured without consideration for patient privacy, mandated both by legal regulations and ethical requirements of the medical profes...
Guardado en:
Autores principales: | Alexander Ziller, Dmitrii Usynin, Rickmer Braren, Marcus Makowski, Daniel Rueckert, Georgios Kaissis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3af80b8b1cd44f2eab82247961c4d757 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Zen and the art of model adaptation: Low-utility-cost attack mitigations in collaborative machine learning
por: Usynin Dmitrii, et al.
Publicado: (2022) -
Efficient, high-performance semantic segmentation using multi-scale feature extraction.
por: Moritz Knolle, et al.
Publicado: (2021) -
Federated deep learning for detecting COVID-19 lung abnormalities in CT: a privacy-preserving multinational validation study
por: Qi Dou, et al.
Publicado: (2021) -
Analysis of Application Examples of Differential Privacy in Deep Learning
por: Zhidong Shen, et al.
Publicado: (2021) -
Enhancing Differential Privacy for Federated Learning at Scale
por: Chunghun Baek, et al.
Publicado: (2021)