Smartphone-based symbol-digit modalities test reliably captures brain damage in multiple sclerosis
Abstract As the burden of neurodegenerative diseases increases, time-limited clinic encounters do not allow quantification of complex neurological functions. Patient-collected digital biomarkers may remedy this, if they provide reliable information. However, psychometric properties of digital tools...
Guardado en:
Autores principales: | Linh Pham, Thomas Harris, Mihael Varosanec, Vanessa Morgan, Peter Kosa, Bibiana Bielekova |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3aff0db76c8b4145b5c4a76b8e9a85e9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Recalibration of deep learning models for abnormality detection in smartphone-captured chest radiograph
por: Po-Chih Kuo, et al.
Publicado: (2021) -
Harnessing consumer smartphone and wearable sensors for clinical cancer research
por: Carissa A. Low
Publicado: (2020) -
Automated screening of sickle cells using a smartphone-based microscope and deep learning
por: Kevin de Haan, et al.
Publicado: (2020) -
Author Correction: Clinical validation of smartphone-based activity tracking in peripheral artery disease patients
por: Raheel Ata, et al.
Publicado: (2020) -
Smartphone apps for depression and anxiety: a systematic review and meta-analysis of techniques to increase engagement
por: Ashley Wu, et al.
Publicado: (2021)