Discovering the Ultimate Limits of Protein Secondary Structure Prediction
Secondary structure prediction (SSP) of proteins is an important structural biology technique with many applications. There have been ~300 algorithms published in the past seven decades with fierce competition in accuracy. In the first 60 years, the accuracy of three-state SSP rose from ~56% to 81%;...
Guardado en:
Autores principales: | Chia-Tzu Ho, Yu-Wei Huang, Teng-Ruei Chen, Chia-Hua Lo, Wei-Cheng Lo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3b0c56d6d9d54bb8ada528187c03b362 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hidden neural networks for transmembrane protein topology prediction
por: Ioannis A. Tamposis, et al.
Publicado: (2021) -
Ensemble of Template-Free and Template-Based Classifiers for Protein Secondary Structure Prediction
por: Gabriel Bianchin de Oliveira, et al.
Publicado: (2021) -
The Protein Interactome of <named-content content-type="genus-species">Streptococcus pneumoniae</named-content> and Bacterial Meta-interactomes Improve Function Predictions
por: S. Wuchty, et al.
Publicado: (2017) -
Improving Protein Subcellular Location Classification by Incorporating Three-Dimensional Structure Information
por: Ge Wang, et al.
Publicado: (2021) -
MUfoldQA_G: High-accuracy protein model QA via retraining and transformation
por: Wenbo Wang, et al.
Publicado: (2021)