Accuracy verification and evaluation of small baseline subset (SBAS) interferometric synthetic aperture radar (InSAR) for monitoring mining subsidence
This study investigated the role of the number of differentialinterferograms and coherent threshold values on the accuracy of SBAS InSAR (small baseline subset interferometric synthetic aperture radar) results for specific applications in Jiyang Coal. Fifty-eight imageswere utilized to form fourdiff...
Guardado en:
Autores principales: | Qiuxiang Tao, Fengyun Wang, Zaijie Guo, Leyin Hu, Chen Yang, Tongwen Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3b2872922c014f479095b36ea277567c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic Interferogram Selection for SBAS-InSAR Based on Deep Convolutional Neural Networks
por: Yufang He, et al.
Publicado: (2021) -
Accuracy Verification and Correction of D-InSAR and SBAS-InSAR in Monitoring Mining Surface Subsidence
por: Yang Chen, et al.
Publicado: (2021) -
InSAR Monitoring of Arctic Landfast Sea Ice Deformation Using L-Band ALOS-2, C-Band Radarsat-2 and Sentinel-1
por: Zhaohua Chen, et al.
Publicado: (2021) -
A Novel Phase Unwrapping Method Used for Monitoring the Land Subsidence in Coal Mining Area Based on U-Net Convolutional Neural Network
por: Zhiyong Wang, et al.
Publicado: (2021) -
An Improved GNSS and InSAR Fusion Method for Monitoring the 3D Deformation of a Mining Area
por: Wentao Zhou, et al.
Publicado: (2021)