Lattice thermal transport in two-dimensional alloys and fractal heterostructures
Abstract Engineering thermal transport in two dimensional materials, alloys and heterostructures is critical for the design of next-generation flexible optoelectronic and energy harvesting devices. Direct experimental characterization of lattice thermal conductivity in these ultra-thin systems is ch...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3b4673124bff4c44bcce7ccb51ff3576 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3b4673124bff4c44bcce7ccb51ff3576 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3b4673124bff4c44bcce7ccb51ff35762021-12-02T14:09:02ZLattice thermal transport in two-dimensional alloys and fractal heterostructures10.1038/s41598-021-81055-42045-2322https://doaj.org/article/3b4673124bff4c44bcce7ccb51ff35762021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-81055-4https://doaj.org/toc/2045-2322Abstract Engineering thermal transport in two dimensional materials, alloys and heterostructures is critical for the design of next-generation flexible optoelectronic and energy harvesting devices. Direct experimental characterization of lattice thermal conductivity in these ultra-thin systems is challenging and the impact of dopant atoms and hetero-phase interfaces, introduced unintentionally during synthesis or as part of deliberate material design, on thermal transport properties is not understood. Here, we use non-equilibrium molecular dynamics simulations to calculate lattice thermal conductivity of $${\mathrm {(Mo|W)Se_2}}$$ ( Mo | W ) Se 2 monolayer crystals including $${\mathrm {Mo}}_{1-x}{\mathrm {W}}_x{\mathrm {Se_2}}$$ Mo 1 - x W x Se 2 alloys with substitutional point defects, periodic $${\mathrm {MoSe_2}|\mathrm {WSe_2}}$$ MoSe 2 | WSe 2 heterostructures with characteristic length scales and scale-free fractal $${\mathrm {MoSe_2}}|{\mathrm {WSe_2}}$$ MoSe 2 | WSe 2 heterostructures. Each of these features has a distinct effect on phonon propagation in the crystal, which can be used to design fractal and periodic alloy structures with highly tunable thermal conductivities. This control over lattice thermal conductivity will enable applications ranging from thermal barriers to thermoelectrics.Aravind KrishnamoorthyNitish BaradwajAiichiro NakanoRajiv K. KaliaPriya VashishtaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Aravind Krishnamoorthy Nitish Baradwaj Aiichiro Nakano Rajiv K. Kalia Priya Vashishta Lattice thermal transport in two-dimensional alloys and fractal heterostructures |
description |
Abstract Engineering thermal transport in two dimensional materials, alloys and heterostructures is critical for the design of next-generation flexible optoelectronic and energy harvesting devices. Direct experimental characterization of lattice thermal conductivity in these ultra-thin systems is challenging and the impact of dopant atoms and hetero-phase interfaces, introduced unintentionally during synthesis or as part of deliberate material design, on thermal transport properties is not understood. Here, we use non-equilibrium molecular dynamics simulations to calculate lattice thermal conductivity of $${\mathrm {(Mo|W)Se_2}}$$ ( Mo | W ) Se 2 monolayer crystals including $${\mathrm {Mo}}_{1-x}{\mathrm {W}}_x{\mathrm {Se_2}}$$ Mo 1 - x W x Se 2 alloys with substitutional point defects, periodic $${\mathrm {MoSe_2}|\mathrm {WSe_2}}$$ MoSe 2 | WSe 2 heterostructures with characteristic length scales and scale-free fractal $${\mathrm {MoSe_2}}|{\mathrm {WSe_2}}$$ MoSe 2 | WSe 2 heterostructures. Each of these features has a distinct effect on phonon propagation in the crystal, which can be used to design fractal and periodic alloy structures with highly tunable thermal conductivities. This control over lattice thermal conductivity will enable applications ranging from thermal barriers to thermoelectrics. |
format |
article |
author |
Aravind Krishnamoorthy Nitish Baradwaj Aiichiro Nakano Rajiv K. Kalia Priya Vashishta |
author_facet |
Aravind Krishnamoorthy Nitish Baradwaj Aiichiro Nakano Rajiv K. Kalia Priya Vashishta |
author_sort |
Aravind Krishnamoorthy |
title |
Lattice thermal transport in two-dimensional alloys and fractal heterostructures |
title_short |
Lattice thermal transport in two-dimensional alloys and fractal heterostructures |
title_full |
Lattice thermal transport in two-dimensional alloys and fractal heterostructures |
title_fullStr |
Lattice thermal transport in two-dimensional alloys and fractal heterostructures |
title_full_unstemmed |
Lattice thermal transport in two-dimensional alloys and fractal heterostructures |
title_sort |
lattice thermal transport in two-dimensional alloys and fractal heterostructures |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/3b4673124bff4c44bcce7ccb51ff3576 |
work_keys_str_mv |
AT aravindkrishnamoorthy latticethermaltransportintwodimensionalalloysandfractalheterostructures AT nitishbaradwaj latticethermaltransportintwodimensionalalloysandfractalheterostructures AT aiichironakano latticethermaltransportintwodimensionalalloysandfractalheterostructures AT rajivkkalia latticethermaltransportintwodimensionalalloysandfractalheterostructures AT priyavashishta latticethermaltransportintwodimensionalalloysandfractalheterostructures |
_version_ |
1718391900318203904 |