Lattice thermal transport in two-dimensional alloys and fractal heterostructures

Abstract Engineering thermal transport in two dimensional materials, alloys and heterostructures is critical for the design of next-generation flexible optoelectronic and energy harvesting devices. Direct experimental characterization of lattice thermal conductivity in these ultra-thin systems is ch...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aravind Krishnamoorthy, Nitish Baradwaj, Aiichiro Nakano, Rajiv K. Kalia, Priya Vashishta
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/3b4673124bff4c44bcce7ccb51ff3576
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:3b4673124bff4c44bcce7ccb51ff3576
record_format dspace
spelling oai:doaj.org-article:3b4673124bff4c44bcce7ccb51ff35762021-12-02T14:09:02ZLattice thermal transport in two-dimensional alloys and fractal heterostructures10.1038/s41598-021-81055-42045-2322https://doaj.org/article/3b4673124bff4c44bcce7ccb51ff35762021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-81055-4https://doaj.org/toc/2045-2322Abstract Engineering thermal transport in two dimensional materials, alloys and heterostructures is critical for the design of next-generation flexible optoelectronic and energy harvesting devices. Direct experimental characterization of lattice thermal conductivity in these ultra-thin systems is challenging and the impact of dopant atoms and hetero-phase interfaces, introduced unintentionally during synthesis or as part of deliberate material design, on thermal transport properties is not understood. Here, we use non-equilibrium molecular dynamics simulations to calculate lattice thermal conductivity of $${\mathrm {(Mo|W)Se_2}}$$ ( Mo | W ) Se 2 monolayer crystals including $${\mathrm {Mo}}_{1-x}{\mathrm {W}}_x{\mathrm {Se_2}}$$ Mo 1 - x W x Se 2 alloys with substitutional point defects, periodic $${\mathrm {MoSe_2}|\mathrm {WSe_2}}$$ MoSe 2 | WSe 2 heterostructures with characteristic length scales and scale-free fractal $${\mathrm {MoSe_2}}|{\mathrm {WSe_2}}$$ MoSe 2 | WSe 2 heterostructures. Each of these features has a distinct effect on phonon propagation in the crystal, which can be used to design fractal and periodic alloy structures with highly tunable thermal conductivities. This control over lattice thermal conductivity will enable applications ranging from thermal barriers to thermoelectrics.Aravind KrishnamoorthyNitish BaradwajAiichiro NakanoRajiv K. KaliaPriya VashishtaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Aravind Krishnamoorthy
Nitish Baradwaj
Aiichiro Nakano
Rajiv K. Kalia
Priya Vashishta
Lattice thermal transport in two-dimensional alloys and fractal heterostructures
description Abstract Engineering thermal transport in two dimensional materials, alloys and heterostructures is critical for the design of next-generation flexible optoelectronic and energy harvesting devices. Direct experimental characterization of lattice thermal conductivity in these ultra-thin systems is challenging and the impact of dopant atoms and hetero-phase interfaces, introduced unintentionally during synthesis or as part of deliberate material design, on thermal transport properties is not understood. Here, we use non-equilibrium molecular dynamics simulations to calculate lattice thermal conductivity of $${\mathrm {(Mo|W)Se_2}}$$ ( Mo | W ) Se 2 monolayer crystals including $${\mathrm {Mo}}_{1-x}{\mathrm {W}}_x{\mathrm {Se_2}}$$ Mo 1 - x W x Se 2 alloys with substitutional point defects, periodic $${\mathrm {MoSe_2}|\mathrm {WSe_2}}$$ MoSe 2 | WSe 2 heterostructures with characteristic length scales and scale-free fractal $${\mathrm {MoSe_2}}|{\mathrm {WSe_2}}$$ MoSe 2 | WSe 2 heterostructures. Each of these features has a distinct effect on phonon propagation in the crystal, which can be used to design fractal and periodic alloy structures with highly tunable thermal conductivities. This control over lattice thermal conductivity will enable applications ranging from thermal barriers to thermoelectrics.
format article
author Aravind Krishnamoorthy
Nitish Baradwaj
Aiichiro Nakano
Rajiv K. Kalia
Priya Vashishta
author_facet Aravind Krishnamoorthy
Nitish Baradwaj
Aiichiro Nakano
Rajiv K. Kalia
Priya Vashishta
author_sort Aravind Krishnamoorthy
title Lattice thermal transport in two-dimensional alloys and fractal heterostructures
title_short Lattice thermal transport in two-dimensional alloys and fractal heterostructures
title_full Lattice thermal transport in two-dimensional alloys and fractal heterostructures
title_fullStr Lattice thermal transport in two-dimensional alloys and fractal heterostructures
title_full_unstemmed Lattice thermal transport in two-dimensional alloys and fractal heterostructures
title_sort lattice thermal transport in two-dimensional alloys and fractal heterostructures
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/3b4673124bff4c44bcce7ccb51ff3576
work_keys_str_mv AT aravindkrishnamoorthy latticethermaltransportintwodimensionalalloysandfractalheterostructures
AT nitishbaradwaj latticethermaltransportintwodimensionalalloysandfractalheterostructures
AT aiichironakano latticethermaltransportintwodimensionalalloysandfractalheterostructures
AT rajivkkalia latticethermaltransportintwodimensionalalloysandfractalheterostructures
AT priyavashishta latticethermaltransportintwodimensionalalloysandfractalheterostructures
_version_ 1718391900318203904