Localization of Laplacian eigenvectors on random networks
Abstract In large random networks, each eigenvector of the Laplacian matrix tends to localize on a subset of network nodes having similar numbers of edges, namely, the components of each Laplacian eigenvector take relatively large values only on a particular subset of nodes whose degrees are close....
Guardado en:
Autores principales: | Shigefumi Hata, Hiroya Nakao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3b61cac4c4914fafa2a343c00f7453b7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Eigenvector Centrality is a Metric of Elastomer Modulus, Heterogeneity, and Damage
por: P. M. Welch, et al.
Publicado: (2017) -
Eigenvector-spatial localisation
por: Travis Harty, et al.
Publicado: (2021) -
Laplacian eigenfunctions learn population structure.
por: Jun Zhang, et al.
Publicado: (2009) -
Node and edge nonlinear eigenvector centrality for hypergraphs
por: Francesco Tudisco, et al.
Publicado: (2021) -
Toward emulating nuclear reactions using eigenvector continuation
por: C. Drischler, et al.
Publicado: (2021)