Localization of Laplacian eigenvectors on random networks
Abstract In large random networks, each eigenvector of the Laplacian matrix tends to localize on a subset of network nodes having similar numbers of edges, namely, the components of each Laplacian eigenvector take relatively large values only on a particular subset of nodes whose degrees are close....
Enregistré dans:
Auteurs principaux: | Shigefumi Hata, Hiroya Nakao |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3b61cac4c4914fafa2a343c00f7453b7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Eigenvector Centrality is a Metric of Elastomer Modulus, Heterogeneity, and Damage
par: P. M. Welch, et autres
Publié: (2017) -
Eigenvector-spatial localisation
par: Travis Harty, et autres
Publié: (2021) -
Laplacian eigenfunctions learn population structure.
par: Jun Zhang, et autres
Publié: (2009) -
Node and edge nonlinear eigenvector centrality for hypergraphs
par: Francesco Tudisco, et autres
Publié: (2021) -
Toward emulating nuclear reactions using eigenvector continuation
par: C. Drischler, et autres
Publié: (2021)