Crash Injury Severity Prediction Using an Ordinal Classification Machine Learning Approach
In many related works, nominal classification algorithms ignore the order between injury severity levels and make sub-optimal predictions. Existing ordinal classification methods suffer rank inconsistency and rank non-monotonicity. The aim of this paper is to propose an ordinal classification approa...
Enregistré dans:
Auteurs principaux: | Shengxue Zhu, Ke Wang, Chongyi Li |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/3b6e2cb0b88b4ac1a903d470968771d1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Assessment on the crash risk factors of a typical long-span bridge using oversampling-based classification method and considering bridge structure movement
par: Peiyan Chen, et autres
Publié: (2021) -
What factors results in having a severe crash? a closer look on distraction-related factors
par: Hesamoddin Razi-Ardakani, et autres
Publié: (2019) -
Injury prediction for advanced automatic crash notification system
par: Ying LU, et autres
Publié: (2021) -
Predicting Out-of-Stock Using Machine Learning: An Application in a Retail Packaged Foods Manufacturing Company
par: Juan Manuel Rozas Andaur, et autres
Publié: (2021) -
Comparison of Ordinal Response Modeling Methods like Decision Trees, Ordinal Forest and L1 Penalized Continuation Ratio Regression in High Dimensional Data
par: Zahra Torkashvand, et autres
Publié: (2021)