Investigation of antioxidant and anticancer activities of unsaturated oligo-galacturonic acids produced by pectinase of Streptomyces hydrogenans YAM1
Abstract Pectin, a diverse carbohydrate polymer in plants consists of a core of α-1,4-linked D-galacturonic acid units, includes a vast portion of fruit and agricultural wastes. Using the wastes to produce beneficial compounds is a new approach to control the negative environmental impacts of the ac...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3b7c0c6cb1534481bb34606cdd454509 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Pectin, a diverse carbohydrate polymer in plants consists of a core of α-1,4-linked D-galacturonic acid units, includes a vast portion of fruit and agricultural wastes. Using the wastes to produce beneficial compounds is a new approach to control the negative environmental impacts of the accumulated wastes. In the present study, we report a pectinase producing bacterium Streptomyces hydrogenans YAM1 and evaluate antioxidative and anticancer effects of the oligosaccharides obtained from pectin degradation. The production of oligosaccharides due to pectinase activity was detected by thin layer chromatography (TLC) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Our results revealed that S. hydrogenans YAM1 can degrade pectin to unsaturated pectic oligo-galacturonic acids (POS) with approximately 93% radical scavenging activity in 20 mg/mL which it is more than 50% of the same concentration of pectin. Flow cytometric analysis revealed that MCF-7 cells viability decreased more than 32 and 92% following treatment with 6 and 20 mg/mL POS after 24 h, respectively. It is suggested that pectin degradation by S. hydrogenans YAM1 is not only a new approach to produce highly active compounds from fruit wastes, but also is an effective method to remove fibrous pollutants from different environments. |
---|