Targeting of HSP70/HSF1 Axis Abrogates In Vitro Ibrutinib-Resistance in Chronic Lymphocytic Leukemia

The Btk inhibitor ibrutinib has significantly changed the management of chronic lymphocytic leukemia (CLL) patients. Despite its clinical efficacy, relapses occur, and outcomes after ibrutinib failure are poor. Although BTK and PLCγ2 mutations have been found to be associated with ibrutinib resistan...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Federica Frezzato, Andrea Visentin, Filippo Severin, Serena Pizzo, Edoardo Ruggeri, Nayla Mouawad, Leonardo Martinello, Elisa Pagnin, Valentina Trimarco, Alessia Tonini, Samuela Carraro, Stefano Pravato, Silvia Imbergamo, Sabrina Manni, Francesco Piazza, Anna Maria Brunati, Monica Facco, Livio Trentin
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/3b7ce646fe2c43e68124326c729c449c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The Btk inhibitor ibrutinib has significantly changed the management of chronic lymphocytic leukemia (CLL) patients. Despite its clinical efficacy, relapses occur, and outcomes after ibrutinib failure are poor. Although BTK and PLCγ2 mutations have been found to be associated with ibrutinib resistance in a fair percentage of CLL patients, no information on resistance mechanisms is available in patients lacking these mutations. The heat shock protein of 70 kDa (HSP70) and its transcription factor heat shock factor 1 (HSF1) play a role in mediating the survival and progression of CLL, as well as taking part in drug resistance in various cancers. We demonstrated that resveratrol and related phenols were able to induce apoptosis in vitro in leukemic cells from CLL untreated patients by acting on the HSP70/HSF1 axis. The same was achieved in cells recovered from 13 CLL patients failing in vivo ibrutinib treatment. HSP70 and HSF1 levels decreased following in vitro treatment, correlating to apoptosis induction. We suggest an involvement of HSP70/HSF1 axis in controlling resistance to ibrutinib in CLL cells, since their inhibition is effective in inducing in vitro apoptosis in cells from ibrutinib refractory patients. The targeting of HSP70/HSF1 axis could represent a novel rational therapeutic strategy for CLL, also for relapsing patients.