Porous carbon aerogel derived from bacterial cellulose with prominent potential for efficient removal of antibiotics from the aquatic matrix

The development of adsorption methods for the remediation of antibiotics pollution in water is hindered by the lack of high-performance sorbents. In this study, a nanofiber carbon aerogel was prepared using bacterial cellulose and its adsorption performances for three common antibiotics (norfloxacin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mengdan Wei, Huabao Zheng, Tainan Zeng, Jian Yang, Xiaobo Fang, Cheng Zhang
Formato: article
Lenguaje:EN
Publicado: IWA Publishing 2021
Materias:
Acceso en línea:https://doaj.org/article/3b7d775e8ce04c8ea5c4755b713d5d05
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The development of adsorption methods for the remediation of antibiotics pollution in water is hindered by the lack of high-performance sorbents. In this study, a nanofiber carbon aerogel was prepared using bacterial cellulose and its adsorption performances for three common antibiotics (norfloxacin, sulfamethoxazole, and chloramphenicol) in water were evaluated. The as-prepared nanofiber carbon aerogel showed a higher adsorption capacity toward target antibiotics compared to other adsorbents reported in the literature. The maximum adsorption capacities for norfloxacin, sulfamethoxazole, and chloramphenicol were 1,926, 1,264, and 525 mg/g, respectively at 298 K. Notably, the nanofiber carbon aerogel was able to adsorb 80% of the equilibrium adsorption capacity within 1 min and reach equilibrium within 15 min. After five regeneration cycles, the adsorption capacity still reached 1,166, 847, and 428 mg/g for norfloxacin, sulfamethoxazole, and chloramphenicol, respectively. The characterization results showed that the carbon aerogel exhibited a high specific surface area (1,505 m2/g) and a layered porous network structure. Furthermore, the mechanistic study reveals that the enhanced antibiotic adsorption by the as-prepared nanofiber carbon aerogel was attributed to the pore filling effect, hydrogen bonding, hydrophobic effect, electrostatic interaction, and π-π interactions. Overall, these results imply that low-cost and green nanofiber carbon aerogels may be promising adsorbents for the remediation of antibiotic-contaminated wastewater. The materials prepared from natural and readily available bacterial cellulose can adsorb antibiotics efficiently, which provides a reference for the development of adsorbent materials using natural substances. HIGHLIGHTS The porous carbon aerogel precursor is green, natural and readily available.; Rapid rate and high antibiotics adsorption capacity was observed.; The comprehensive adsorption mechanism of porous carbon aerogel was explored.;