Bayesian network-driven clustering analysis with feature selection for high-dimensional multi-modal molecular data
Abstract Multi-modal molecular profiling data in bulk tumors or single cells are accumulating at a fast pace. There is a great need for developing statistical and computational methods to reveal molecular structures in complex data types toward biological discoveries. Here, we introduce Nebula, a no...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3b852817d72b488da8b80254eba51485 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3b852817d72b488da8b80254eba51485 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3b852817d72b488da8b80254eba514852021-12-02T13:34:51ZBayesian network-driven clustering analysis with feature selection for high-dimensional multi-modal molecular data10.1038/s41598-021-84514-02045-2322https://doaj.org/article/3b852817d72b488da8b80254eba514852021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-84514-0https://doaj.org/toc/2045-2322Abstract Multi-modal molecular profiling data in bulk tumors or single cells are accumulating at a fast pace. There is a great need for developing statistical and computational methods to reveal molecular structures in complex data types toward biological discoveries. Here, we introduce Nebula, a novel Bayesian integrative clustering analysis for high dimensional multi-modal molecular data to identify directly interpretable clusters and associated biomarkers in a unified and biologically plausible framework. To facilitate computational efficiency, a variational Bayes approach is developed to approximate the joint posterior distribution to achieve model inference in high-dimensional settings. We describe a pan-cancer data analysis of genomic, epigenomic, and transcriptomic alterations in close to 9000 tumor samples across canonical oncogenic signaling pathways, immune and stemness phenotype, with comparisons to state-of-the-art clustering methods. We demonstrate that Nebula has the unique advantage of revealing patterns on the basis of shared pathway alterations, offering biological and clinical insights beyond tumor type and histology in the pan-cancer analysis setting. We also illustrate the utility of Nebula in single cell data for immune cell decomposition in peripheral blood samples.Yize ZhaoChanggee ChangMargaret HannumJasme LeeRonglai ShenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Yize Zhao Changgee Chang Margaret Hannum Jasme Lee Ronglai Shen Bayesian network-driven clustering analysis with feature selection for high-dimensional multi-modal molecular data |
description |
Abstract Multi-modal molecular profiling data in bulk tumors or single cells are accumulating at a fast pace. There is a great need for developing statistical and computational methods to reveal molecular structures in complex data types toward biological discoveries. Here, we introduce Nebula, a novel Bayesian integrative clustering analysis for high dimensional multi-modal molecular data to identify directly interpretable clusters and associated biomarkers in a unified and biologically plausible framework. To facilitate computational efficiency, a variational Bayes approach is developed to approximate the joint posterior distribution to achieve model inference in high-dimensional settings. We describe a pan-cancer data analysis of genomic, epigenomic, and transcriptomic alterations in close to 9000 tumor samples across canonical oncogenic signaling pathways, immune and stemness phenotype, with comparisons to state-of-the-art clustering methods. We demonstrate that Nebula has the unique advantage of revealing patterns on the basis of shared pathway alterations, offering biological and clinical insights beyond tumor type and histology in the pan-cancer analysis setting. We also illustrate the utility of Nebula in single cell data for immune cell decomposition in peripheral blood samples. |
format |
article |
author |
Yize Zhao Changgee Chang Margaret Hannum Jasme Lee Ronglai Shen |
author_facet |
Yize Zhao Changgee Chang Margaret Hannum Jasme Lee Ronglai Shen |
author_sort |
Yize Zhao |
title |
Bayesian network-driven clustering analysis with feature selection for high-dimensional multi-modal molecular data |
title_short |
Bayesian network-driven clustering analysis with feature selection for high-dimensional multi-modal molecular data |
title_full |
Bayesian network-driven clustering analysis with feature selection for high-dimensional multi-modal molecular data |
title_fullStr |
Bayesian network-driven clustering analysis with feature selection for high-dimensional multi-modal molecular data |
title_full_unstemmed |
Bayesian network-driven clustering analysis with feature selection for high-dimensional multi-modal molecular data |
title_sort |
bayesian network-driven clustering analysis with feature selection for high-dimensional multi-modal molecular data |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/3b852817d72b488da8b80254eba51485 |
work_keys_str_mv |
AT yizezhao bayesiannetworkdrivenclusteringanalysiswithfeatureselectionforhighdimensionalmultimodalmoleculardata AT changgeechang bayesiannetworkdrivenclusteringanalysiswithfeatureselectionforhighdimensionalmultimodalmoleculardata AT margarethannum bayesiannetworkdrivenclusteringanalysiswithfeatureselectionforhighdimensionalmultimodalmoleculardata AT jasmelee bayesiannetworkdrivenclusteringanalysiswithfeatureselectionforhighdimensionalmultimodalmoleculardata AT ronglaishen bayesiannetworkdrivenclusteringanalysiswithfeatureselectionforhighdimensionalmultimodalmoleculardata |
_version_ |
1718392728694292480 |