Bayesian network-driven clustering analysis with feature selection for high-dimensional multi-modal molecular data
Abstract Multi-modal molecular profiling data in bulk tumors or single cells are accumulating at a fast pace. There is a great need for developing statistical and computational methods to reveal molecular structures in complex data types toward biological discoveries. Here, we introduce Nebula, a no...
Guardado en:
Autores principales: | Yize Zhao, Changgee Chang, Margaret Hannum, Jasme Lee, Ronglai Shen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3b852817d72b488da8b80254eba51485 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multi-scale inference of interaction rules in animal groups using Bayesian model selection.
por: Richard P Mann, et al.
Publicado: (2012) -
Statistical and Visual Analysis of Audio, Text, and Image Features for Multi-Modal Music Genre Recognition
por: Ben Wilkes, et al.
Publicado: (2021) -
A deep learning based framework for the registration of three dimensional multi-modal medical images of the head
por: Kh Tohidul Islam, et al.
Publicado: (2021) -
Molecular classification reveals the diverse genetic and prognostic features of gastric cancer: A multi-omics consensus ensemble clustering
por: Xianyu Hu, et al.
Publicado: (2021) -
Bayesian network considering the clustering of the customers in a hair salon
por: Yuki Horita, et al.
Publicado: (2019)