Magnetoinductive waves in attenuating media
Abstract The capability of magnetic induction to transmit signals in attenuating environments has recently gained significant research interest. The wave aspect—magnetoinductive (MI) waves—has been proposed for numerous applications in RF-challenging environments, such as underground/underwater wire...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/3b95aa023ab34105b7e5fbafe53c3956 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:3b95aa023ab34105b7e5fbafe53c3956 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:3b95aa023ab34105b7e5fbafe53c39562021-12-02T18:15:49ZMagnetoinductive waves in attenuating media10.1038/s41598-021-85838-72045-2322https://doaj.org/article/3b95aa023ab34105b7e5fbafe53c39562021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-85838-7https://doaj.org/toc/2045-2322Abstract The capability of magnetic induction to transmit signals in attenuating environments has recently gained significant research interest. The wave aspect—magnetoinductive (MI) waves—has been proposed for numerous applications in RF-challenging environments, such as underground/underwater wireless networks, body area networks, and in-vivo medical diagnosis and treatment applications, to name but a few, where conventional electromagnetic waves have a number of limitations, most notably losses. To date, the effects of eddy currents inside the dissipative medium have not been characterised analytically. Here we propose a comprehensive circuit model of coupled resonators in a homogeneous dissipative medium, that takes into account all the electromagnetic effects of eddy currents, and, thereby, derive a general dispersion equation for the MI waves. We also report laboratory experiments to confirm our findings. Our work will serve as a fundamental model for design and analysis of every system employing MI waves or more generally, magnetically-coupled circuits in attenuating media.Son ChuMark S. LuloffJiaruo YanPavel PetrovChristopher J. StevensEkaterina ShamoninaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Son Chu Mark S. Luloff Jiaruo Yan Pavel Petrov Christopher J. Stevens Ekaterina Shamonina Magnetoinductive waves in attenuating media |
description |
Abstract The capability of magnetic induction to transmit signals in attenuating environments has recently gained significant research interest. The wave aspect—magnetoinductive (MI) waves—has been proposed for numerous applications in RF-challenging environments, such as underground/underwater wireless networks, body area networks, and in-vivo medical diagnosis and treatment applications, to name but a few, where conventional electromagnetic waves have a number of limitations, most notably losses. To date, the effects of eddy currents inside the dissipative medium have not been characterised analytically. Here we propose a comprehensive circuit model of coupled resonators in a homogeneous dissipative medium, that takes into account all the electromagnetic effects of eddy currents, and, thereby, derive a general dispersion equation for the MI waves. We also report laboratory experiments to confirm our findings. Our work will serve as a fundamental model for design and analysis of every system employing MI waves or more generally, magnetically-coupled circuits in attenuating media. |
format |
article |
author |
Son Chu Mark S. Luloff Jiaruo Yan Pavel Petrov Christopher J. Stevens Ekaterina Shamonina |
author_facet |
Son Chu Mark S. Luloff Jiaruo Yan Pavel Petrov Christopher J. Stevens Ekaterina Shamonina |
author_sort |
Son Chu |
title |
Magnetoinductive waves in attenuating media |
title_short |
Magnetoinductive waves in attenuating media |
title_full |
Magnetoinductive waves in attenuating media |
title_fullStr |
Magnetoinductive waves in attenuating media |
title_full_unstemmed |
Magnetoinductive waves in attenuating media |
title_sort |
magnetoinductive waves in attenuating media |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/3b95aa023ab34105b7e5fbafe53c3956 |
work_keys_str_mv |
AT sonchu magnetoinductivewavesinattenuatingmedia AT marksluloff magnetoinductivewavesinattenuatingmedia AT jiaruoyan magnetoinductivewavesinattenuatingmedia AT pavelpetrov magnetoinductivewavesinattenuatingmedia AT christopherjstevens magnetoinductivewavesinattenuatingmedia AT ekaterinashamonina magnetoinductivewavesinattenuatingmedia |
_version_ |
1718378328039096320 |